On regular graphs with Šoltés vertices (2024)

Nino BašićFAMNIT, University of Primorska, Koper, SloveniaIAM, University of Primorska, Koper, SloveniaInstitute of Mathematics, Physics and Mechanics, Ljubljana, SloveniaMartin KnorSlovak University of Technology in Bratislava, SlovakiaRiste ŠkrekovskiFAMNIT, University of Primorska, Koper, SloveniaFaculty of Mathematics and Physics, University of Ljubljana, SloveniaFaculty of Information Studies, Novo mesto, Slovenia

Abstract

Let W(G)𝑊𝐺W(G)italic_W ( italic_G ) be the Wiener index of a graph G𝐺Gitalic_G. We say that a vertex vV(G)𝑣𝑉𝐺v\in V(G)italic_v ∈ italic_V ( italic_G ) is a Šoltés vertex in G𝐺Gitalic_G if W(Gv)=W(G)𝑊𝐺𝑣𝑊𝐺W(G-v)=W(G)italic_W ( italic_G - italic_v ) = italic_W ( italic_G ),i.e.the Wiener index does not change if the vertex v𝑣vitalic_v is removed.In 1991, Šoltés posed the problem of identifying all connected graphs G𝐺Gitalic_G with the property that all vertices of G𝐺Gitalic_G are Šoltés vertices.The only such graph known to this day is C11subscript𝐶11C_{11}italic_C start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT. As the original problem appears to be too challenging, several relaxationswere studied: one may look for graphs with at least k𝑘kitalic_k Šoltes vertices; orone may look for α𝛼\alphaitalic_α-Šoltés graphs, i.e.graphs where the ratio between the number of Šoltésvertices and the order of the graph is at least α𝛼\alphaitalic_α. Note that the original problem is, in fact, to find all 1111-Šoltés graphs.We intuitively believe that every 1111-Šoltés graph has to be regular andhas to possess a high degree of symmetry. Therefore,we are interested in regular graphs that contain one or more Šoltés vertices.In this paper, we present several partial results.For every r1𝑟1r\geq 1italic_r ≥ 1 we describe a construction of an infinite family of cubic 2222-connected graphs with at least 2rsuperscript2𝑟2^{r}2 start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT Šoltés vertices.Moreover, we report that a computer search on publicly available collections of vertex-transitive graphs did not reveal any 1111-Šoltés graph.We are only able to provide examples of large 1313\frac{1}{3}divide start_ARG 1 end_ARG start_ARG 3 end_ARG-Šoltés graphs that are obtained by truncating certain cubic vertex-transitive graphs.This leads us to believe that no 1111-Šoltés graph other than C11subscript𝐶11C_{11}italic_C start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT exists.

Keywords: Šoltés problem, Wiener index, regular graph, cubic graph, Cayley graph, Šoltés vertex.

Math.Subj.Class.(2020): 05C12, 05C90, 20B25

1 Introduction

All graphs under consideration in this paper are simple and undirected. The Wiener index of a graph G𝐺Gitalic_G, denoted by W(G)𝑊𝐺W(G)italic_W ( italic_G ), is defined as

W(G)=12uV(G)vV(G)dG(u,v)={u,v}V(G)dG(u,v),𝑊𝐺12subscript𝑢𝑉𝐺subscript𝑣𝑉𝐺subscript𝑑𝐺𝑢𝑣subscript𝑢𝑣𝑉𝐺subscript𝑑𝐺𝑢𝑣W(G)=\frac{1}{2}\sum_{u\in V(G)}\sum_{v\in V(G)}d_{G}(u,v)=\sum_{\{u,v\}%\subseteq V(G)}d_{G}(u,v),italic_W ( italic_G ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∑ start_POSTSUBSCRIPT italic_u ∈ italic_V ( italic_G ) end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT italic_v ∈ italic_V ( italic_G ) end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_u , italic_v ) = ∑ start_POSTSUBSCRIPT { italic_u , italic_v } ⊆ italic_V ( italic_G ) end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_u , italic_v ) ,(1)

where dG(u,v)subscript𝑑𝐺𝑢𝑣d_{G}(u,v)italic_d start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_u , italic_v ) is the distance between vertices u𝑢uitalic_u and v𝑣vitalic_v (i.e.the length of a shortest path between u𝑢uitalic_u and v𝑣vitalic_v).If the graph G𝐺Gitalic_G is disconnected, we may take W(G)=𝑊𝐺W(G)=\inftyitalic_W ( italic_G ) = ∞.The Wiener index was introduced in 1947 [17] and has been extensively studied ever since. For a recent survey onthe Wiener index see [9]. The transmission of a vertex v𝑣vitalic_v in a graph G𝐺Gitalic_G, denoted by wG(v)subscript𝑤𝐺𝑣w_{G}(v)italic_w start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_v ), is defined aswG(v)=uV(G)dG(u,v)subscript𝑤𝐺𝑣subscript𝑢𝑉𝐺subscript𝑑𝐺𝑢𝑣w_{G}(v)=\sum_{u\in V(G)}d_{G}(u,v)italic_w start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_v ) = ∑ start_POSTSUBSCRIPT italic_u ∈ italic_V ( italic_G ) end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_u , italic_v ). Note that (1) can also be expressed as W(G)=12uV(G)wG(u)𝑊𝐺12subscript𝑢𝑉𝐺subscript𝑤𝐺𝑢W(G)=\frac{1}{2}\sum_{u\in V(G)}w_{G}(u)italic_W ( italic_G ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∑ start_POSTSUBSCRIPT italic_u ∈ italic_V ( italic_G ) end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_u ).

Let vV(G)𝑣𝑉𝐺v\in V(G)italic_v ∈ italic_V ( italic_G ). The graph obtaned from G𝐺Gitalic_G by removing a vertex v𝑣vitalic_v is denoted by Gv𝐺𝑣G-vitalic_G - italic_v. If we remove a vertexv𝑣vitalic_v from a graph G𝐺Gitalic_G, any of the following scenarios may occur:

  1. (a)

    the Wiener index decreases (e.g.W(K7)=21𝑊subscript𝐾721W(K_{7})=21italic_W ( italic_K start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT ) = 21 and W(K7v)=W(K6)=15𝑊subscript𝐾7𝑣𝑊subscript𝐾615W(K_{7}-v)=W(K_{6})=15italic_W ( italic_K start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT - italic_v ) = italic_W ( italic_K start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT ) = 15);

  2. (b)

    the Wiener index increases (e.g.W(Wh9)=56𝑊subscriptWh956W(\mathrm{Wh}_{9})=56italic_W ( roman_Wh start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT ) = 56 and W(Wh9v0)=W(C8)=64𝑊subscriptWh9subscript𝑣0𝑊subscript𝐶864W(\mathrm{Wh}_{9}-v_{0})=W(C_{8})=64italic_W ( roman_Wh start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT - italic_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_W ( italic_C start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ) = 64, where WhnsubscriptWh𝑛\mathrm{Wh}_{n}roman_Wh start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT denotes thewheel graph on n𝑛nitalic_n vertices and v0subscript𝑣0v_{0}italic_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the central vertex of the wheel);

  3. (c)

    the Wiener index does not change (e.g.W(Wh8)=42𝑊subscriptWh842W(\mathrm{Wh}_{8})=42italic_W ( roman_Wh start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ) = 42 and W(Wh8v0)=W(C7)=42𝑊subscriptWh8subscript𝑣0𝑊subscript𝐶742W(\mathrm{Wh}_{8}-v_{0})=W(C_{7})=42italic_W ( roman_Wh start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT - italic_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_W ( italic_C start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT ) = 42, where v0subscript𝑣0v_{0}italic_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the central vertexof Wh8subscriptWh8\mathrm{Wh}_{8}roman_Wh start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT).

We say that a vertex vV(G)𝑣𝑉𝐺v\in V(G)italic_v ∈ italic_V ( italic_G ) is a Šoltés vertex of G𝐺Gitalic_G if W(G)=W(Gv)𝑊𝐺𝑊𝐺𝑣W(G)=W(G-v)italic_W ( italic_G ) = italic_W ( italic_G - italic_v ), i.e.the Wiener index of G𝐺Gitalic_G does not change if the vertex v𝑣vitalic_v is removed.If G𝐺Gitalic_G is disconnected, with two non-trivial components or with at least three components, then every vertex is a Šoltés vertex. Therefore, it is natural to require that G𝐺Gitalic_G is connected.Let

S(G)={vV(G)W(G)=W(Gv)}𝑆𝐺conditional-set𝑣𝑉𝐺𝑊𝐺𝑊𝐺𝑣S(G)=\{v\in V(G)\mid W(G)=W(G-v)\}italic_S ( italic_G ) = { italic_v ∈ italic_V ( italic_G ) ∣ italic_W ( italic_G ) = italic_W ( italic_G - italic_v ) }

and let 0α10𝛼10\leq\alpha\leq 10 ≤ italic_α ≤ 1.We say that a graph G𝐺Gitalic_G is an α𝛼\alphaitalic_α-Šoltés graph if |S(G)|α|V(G)|𝑆𝐺𝛼𝑉𝐺|S(G)|\geq\alpha|V(G)|| italic_S ( italic_G ) | ≥ italic_α | italic_V ( italic_G ) |, i.e.the ratio between thenumber of Šoltés vertices of G𝐺Gitalic_G and the order of G𝐺Gitalic_G is at least α𝛼\alphaitalic_α.For example, the graph in Figure1 is the smallest cubic 1313\frac{1}{3}divide start_ARG 1 end_ARG start_ARG 3 end_ARG-Šoltés graph.Note that G𝐺Gitalic_G is an 1111-Šoltés graph if every vertex in G𝐺Gitalic_Gis a Šoltés vertex. The only 1111-Šoltés graph known to this day is the cycle on 11111111 vertices, C11subscript𝐶11C_{11}italic_C start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT. In this paper, Šoltés graph is simply thesynonym for 1111-Šoltés graph.

The Šoltés problem [15] was forgotten for nearly three decades. It was revived and popularised in 2018 by Knoret al.[7].They considered a relaxation of the original problem: one may look for graphs witha prescribed number of Šoltés vertices. Theyshowed that there exists a unicyclic graph on n𝑛nitalic_n vertices with at least one Šoltés vertex for every n9𝑛9n\geq 9italic_n ≥ 9. They also showed that there exists a unicyclicgraph with a cycle of length c𝑐citalic_c and at least one Šoltés vertex for every c5𝑐5c\geq 5italic_c ≥ 5, and that every graph is an induced subgraph of some larger graph with a Šoltés vertex.They have further shown that a Šoltés vertex in a graph may have a prescribed degree[8]. Namely, they proved that for any d3𝑑3d\geq 3italic_d ≥ 3there exist infinitely many graphs with a Šoltés vertex of degree d𝑑ditalic_d. Necessary conditions for the existence of Šoltés verticesin Cartesian products of graphs were also considered[8].In 2021, Boket al.[3] showed that for every k1𝑘1k\geq 1italic_k ≥ 1 there exist infinitely many cactus graphs with exactly k𝑘kitalic_k distinct Šoltés vertices.In 2021, Hu et al.[6] studied a variation of the problem and showed that there exist infinitely many graphs where the Wiener indexremains the same even if r2𝑟2r\geq 2italic_r ≥ 2 distinct vertices are removed from the graph.

Akhmejanova et al.[1] considered another possible relaxation of the problem: Do there exist graphs with a given percentage of Šoltésvertices?They constructed two infinite families of graphs with a relatively high proportion of Šoltés vertices.Their first family comprises graphs B(k)𝐵𝑘B(k)italic_B ( italic_k ), k2𝑘2k\geq 2italic_k ≥ 2, where B(k)𝐵𝑘B(k)italic_B ( italic_k ) is a 2k5k+62𝑘5𝑘6\frac{2k}{5k+6}divide start_ARG 2 italic_k end_ARG start_ARG 5 italic_k + 6 end_ARG-Šoltés graph on 5k+65𝑘65k+65 italic_k + 6 vertices.Two vertices of B(k)𝐵𝑘B(k)italic_B ( italic_k ) are of degree k+1𝑘1k+1italic_k + 1, while the remaining vertices are of degree 2222. The percentage of Šoltés vertices is below 2525\frac{2}{5}divide start_ARG 2 end_ARG start_ARG 5 end_ARG,but tends to 2525\frac{2}{5}divide start_ARG 2 end_ARG start_ARG 5 end_ARG as k𝑘kitalic_k goes to infinity. They also introduced a two-parametric infinite family L(k,m)𝐿𝑘𝑚L(k,m)italic_L ( italic_k , italic_m ), m7𝑚7m\geq 7italic_m ≥ 7 and km3m6𝑘𝑚3𝑚6k\geq\frac{m-3}{m-6}italic_k ≥ divide start_ARG italic_m - 3 end_ARG start_ARG italic_m - 6 end_ARG.Here, the percentage of Šoltés vertices is below 1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG, but tends to 1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG as k𝑘kitalic_k goes to infinity for a fixed m𝑚mitalic_m. These graphscontain at least one leaf, at least km𝑘𝑚kmitalic_k italic_m vertices of degree 2222, and a vertex of degree km+1𝑘𝑚1km+1italic_k italic_m + 1.

In the present paper we focus on regular graphs.Our intuition lead us to believe that the solutions to the original Šoltés problem should be graphs having all vertices of the same degree.

Conjecture 1.

If G𝐺Gitalic_G is a Šoltés graph, then G𝐺Gitalic_G is regular.

For a general regular graph G𝐺Gitalic_G, the values W(Gu)𝑊𝐺𝑢W(G-u)italic_W ( italic_G - italic_u ) and W(Gv)𝑊𝐺𝑣W(G-v)italic_W ( italic_G - italic_v ) might be significantly differentfor two different vertices u,vV(G)𝑢𝑣𝑉𝐺u,v\in V(G)italic_u , italic_v ∈ italic_V ( italic_G ); it may happen that removal of one vertex increases the Wiener index,while removal of the other vertex descreases the Wiener index.However, W(Gu)𝑊𝐺𝑢W(G-u)italic_W ( italic_G - italic_u ) and W(Gv)𝑊𝐺𝑣W(G-v)italic_W ( italic_G - italic_v ) are equal if verticesu𝑢uitalic_u and v𝑣vitalic_v belong to the same vertex orbit. Therefore, we believe that a Šoltés graphis likely to be vertex transitive.

Conjecture 2.

If G𝐺Gitalic_G is a Šoltés graph, then G𝐺Gitalic_G is vertex transitive.

Among truncations of cubic vertex-transitive graphs we found several 1313\frac{1}{3}divide start_ARG 1 end_ARG start_ARG 3 end_ARG-Šoltés graphs; see Section4.Interestingly, all our examples are in fact Cayley graphs and this leads us to pose the following conjecture.

Conjecture 3.

If G𝐺Gitalic_G is a Šoltés graph, then G𝐺Gitalic_G is a Cayley graph.

It is not hard to obtain small examples of regular graphs with Šoltés vertices.We used the geng [11] software to generate small k𝑘kitalic_k-regular graphs (for k=3,4𝑘34k=3,4italic_k = 3 , 4 and 5555).Let rsuperscript𝑟\mathcal{R}^{r}caligraphic_R start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT denote the class of all r𝑟ritalic_r-regular graphs and let nrsubscriptsuperscript𝑟𝑛\mathcal{R}^{r}_{n}caligraphic_R start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT denote the set of r𝑟ritalic_r-regular graphs on n𝑛nitalic_n vertices. Let N(𝒢,k)𝑁𝒢𝑘N(\mathcal{G},k)italic_N ( caligraphic_G , italic_k ) be the number of graphs in the class 𝒢𝒢\mathcal{G}caligraphic_G that contain exactly k𝑘kitalic_k Šoltés vertices.

Table1 shows the numbers of (non-isomorphic) cubic graphs of orders n24𝑛24n\leq 24italic_n ≤ 24 that contain Šoltés vertices.We can see that cubic graphs of order 12121212 or less do not contain Šoltés vertices. There are plenty of examples with oneŠoltés vertex. Cubic graphs with two Šoltés vertices first appear at order n=14𝑛14n=14italic_n = 14; there are three such graphs (see Figure2(a)–(c)).Examples with three and four Šoltés vertices appear at order n=16𝑛16n=16italic_n = 16; there is one cubic graph with three and two cubic graphs with four Šoltés vertices(see Figure2(d)–(f)).At order n=18𝑛18n=18italic_n = 18, there are no graphs with three Šoltés vertices, however there is only one graph with four Šoltés vertices (see Figure2(g)).Numbers of 4444-regular and 5555-regular graphs with respect to their number of Šoltés vertices are given in Tables2 and3, respectively.

N(n3,k)n|n3|k=1k=2k=3k=4k=5k=6k=7k=812112--------145094𝟑------16406010837𝟏𝟐----18413011014200-𝟏----20510489134601076613----227319447194432961015152-1--241179405353161124130087259633323-𝟏missing-subexpressionmissing-subexpression𝑁subscriptsuperscript3𝑛𝑘missing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpression𝑛subscriptsuperscript3𝑛𝑘1𝑘2𝑘3𝑘4𝑘5𝑘6𝑘7𝑘8missing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionabsent12112--------1450943------1640601083712----18413011014200-1----20510489134601076613----227319447194432961015152-1--241179405353161124130087259633323-1\begin{array}[]{r|r||r|r|r|r|r|r|r|r}&&\lx@intercol\hfil N(\mathcal{R}^{3}_{n}%,k)\hfil\lx@intercol\\\cline{3-10}\cr n&|\mathcal{R}^{3}_{n}|&k=1&k=2&k=3&k=4&k=5&k=6&k=7&k=8\\\hline\cr\hline\cr\leq 12&112&\text{-}&\text{-}&\text{-}&\text{-}&\text{-}&%\text{-}&\text{-}&\text{-}\\14&509&4&{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}%\mathbf{3}}&\text{-}&\text{-}&\text{-}&\text{-}&\text{-}&\text{-}\\16&4060&108&37&{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{%0,0,1}\mathbf{1}}&{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{%0,0,1}\mathbf{2}}&\text{-}&\text{-}&\text{-}&\text{-}\\18&41301&1014&200&\text{-}&{\color[rgb]{0,0,1}\definecolor[named]{%pgfstrokecolor}{rgb}{0,0,1}\mathbf{1}}&\text{-}&\text{-}&\text{-}&\text{-}\\20&510489&13460&1076&6&13&\text{-}&\text{-}&\text{-}&\text{-}\\22&7319447&194432&9610&151&52&\text{-}&1&\text{-}&\text{-}\\24&117940535&3161124&130087&2596&333&2&3&\text{-}&{\color[rgb]{0,0,1}%\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathbf{1}}\\\end{array}start_ARRAY start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL italic_N ( caligraphic_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_k ) end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_n end_CELL start_CELL | caligraphic_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | end_CELL start_CELL italic_k = 1 end_CELL start_CELL italic_k = 2 end_CELL start_CELL italic_k = 3 end_CELL start_CELL italic_k = 4 end_CELL start_CELL italic_k = 5 end_CELL start_CELL italic_k = 6 end_CELL start_CELL italic_k = 7 end_CELL start_CELL italic_k = 8 end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ≤ 12 end_CELL start_CELL 112 end_CELL start_CELL - end_CELL start_CELL - end_CELL start_CELL - end_CELL start_CELL - end_CELL start_CELL - end_CELL start_CELL - end_CELL start_CELL - end_CELL start_CELL - end_CELL end_ROW start_ROW start_CELL 14 end_CELL start_CELL 509 end_CELL start_CELL 4 end_CELL start_CELL bold_3 end_CELL start_CELL - end_CELL start_CELL - end_CELL start_CELL - end_CELL start_CELL - end_CELL start_CELL - end_CELL start_CELL - end_CELL end_ROW start_ROW start_CELL 16 end_CELL start_CELL 4060 end_CELL start_CELL 108 end_CELL start_CELL 37 end_CELL start_CELL bold_1 end_CELL start_CELL bold_2 end_CELL start_CELL - end_CELL start_CELL - end_CELL start_CELL - end_CELL start_CELL - end_CELL end_ROW start_ROW start_CELL 18 end_CELL start_CELL 41301 end_CELL start_CELL 1014 end_CELL start_CELL 200 end_CELL start_CELL - end_CELL start_CELL bold_1 end_CELL start_CELL - end_CELL start_CELL - end_CELL start_CELL - end_CELL start_CELL - end_CELL end_ROW start_ROW start_CELL 20 end_CELL start_CELL 510489 end_CELL start_CELL 13460 end_CELL start_CELL 1076 end_CELL start_CELL 6 end_CELL start_CELL 13 end_CELL start_CELL - end_CELL start_CELL - end_CELL start_CELL - end_CELL start_CELL - end_CELL end_ROW start_ROW start_CELL 22 end_CELL start_CELL 7319447 end_CELL start_CELL 194432 end_CELL start_CELL 9610 end_CELL start_CELL 151 end_CELL start_CELL 52 end_CELL start_CELL - end_CELL start_CELL 1 end_CELL start_CELL - end_CELL start_CELL - end_CELL end_ROW start_ROW start_CELL 24 end_CELL start_CELL 117940535 end_CELL start_CELL 3161124 end_CELL start_CELL 130087 end_CELL start_CELL 2596 end_CELL start_CELL 333 end_CELL start_CELL 2 end_CELL start_CELL 3 end_CELL start_CELL - end_CELL start_CELL bold_1 end_CELL end_ROW end_ARRAY

N(n4,k)n|n4|k=1k=2k=3k=4121894----1310778-𝟏--1488168306--1580549126585-51680374182191472--178622163414430209741missing-subexpressionmissing-subexpression𝑁subscriptsuperscript4𝑛𝑘missing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpression𝑛subscriptsuperscript4𝑛𝑘1𝑘2𝑘3𝑘4missing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionabsent121894----1310778-1--1488168306--1580549126585-51680374182191472--178622163414430209741\begin{array}[]{r|r||r|r|r|r}&&\lx@intercol\hfil N(\mathcal{R}^{4}_{n},k)\hfil%\lx@intercol\\\cline{3-6}\cr n&|\mathcal{R}^{4}_{n}|&k=1&k=2&k=3&k=4\\\hline\cr\hline\cr\leq 12&1894&\text{-}&\text{-}&\text{-}&\text{-}\\13&10778&\text{-}&{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{%0,0,1}\mathbf{1}}&\text{-}&\text{-}\\14&88168&30&6&\text{-}&\text{-}\\15&805491&265&85&\text{-}&5\\16&8037418&2191&472&\text{-}&\text{-}\\17&86221634&14430&2097&4&1\\\end{array}start_ARRAY start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL italic_N ( caligraphic_R start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_k ) end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_n end_CELL start_CELL | caligraphic_R start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | end_CELL start_CELL italic_k = 1 end_CELL start_CELL italic_k = 2 end_CELL start_CELL italic_k = 3 end_CELL start_CELL italic_k = 4 end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ≤ 12 end_CELL start_CELL 1894 end_CELL start_CELL - end_CELL start_CELL - end_CELL start_CELL - end_CELL start_CELL - end_CELL end_ROW start_ROW start_CELL 13 end_CELL start_CELL 10778 end_CELL start_CELL - end_CELL start_CELL bold_1 end_CELL start_CELL - end_CELL start_CELL - end_CELL end_ROW start_ROW start_CELL 14 end_CELL start_CELL 88168 end_CELL start_CELL 30 end_CELL start_CELL 6 end_CELL start_CELL - end_CELL start_CELL - end_CELL end_ROW start_ROW start_CELL 15 end_CELL start_CELL 805491 end_CELL start_CELL 265 end_CELL start_CELL 85 end_CELL start_CELL - end_CELL start_CELL 5 end_CELL end_ROW start_ROW start_CELL 16 end_CELL start_CELL 8037418 end_CELL start_CELL 2191 end_CELL start_CELL 472 end_CELL start_CELL - end_CELL start_CELL - end_CELL end_ROW start_ROW start_CELL 17 end_CELL start_CELL 86221634 end_CELL start_CELL 14430 end_CELL start_CELL 2097 end_CELL start_CELL 4 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY

N(n5,k)n|n5|k=1k=2k=3k=4127912----14345938383--missing-subexpressionmissing-subexpression𝑁subscriptsuperscript5𝑛𝑘missing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpression𝑛subscriptsuperscript5𝑛𝑘1𝑘2𝑘3𝑘4missing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionabsent127912----14345938383--\begin{array}[]{r|r||r|r|r|r}&&\lx@intercol\hfil N(\mathcal{R}^{5}_{n},k)\hfil%\lx@intercol\\\cline{3-6}\cr n&|\mathcal{R}^{5}_{n}|&k=1&k=2&k=3&k=4\\\hline\cr\hline\cr\leq 12&7912&\text{-}&\text{-}&\text{-}&\text{-}\\14&3459383&8&3&\text{-}&\text{-}\\\end{array}start_ARRAY start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL italic_N ( caligraphic_R start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_k ) end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_n end_CELL start_CELL | caligraphic_R start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | end_CELL start_CELL italic_k = 1 end_CELL start_CELL italic_k = 2 end_CELL start_CELL italic_k = 3 end_CELL start_CELL italic_k = 4 end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ≤ 12 end_CELL start_CELL 7912 end_CELL start_CELL - end_CELL start_CELL - end_CELL start_CELL - end_CELL start_CELL - end_CELL end_ROW start_ROW start_CELL 14 end_CELL start_CELL 3459383 end_CELL start_CELL 8 end_CELL start_CELL 3 end_CELL start_CELL - end_CELL start_CELL - end_CELL end_ROW end_ARRAY

In the next two sections we construct an infinite family of cubic 2222-connected graphs with at least 2rsuperscript2𝑟2^{r}2 start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT, r1𝑟1r\geq 1italic_r ≥ 1, Šoltés vertices.It recently came to our attention that Dobrynin independently found an infinite family of cubic graphs with fourŠoltés vertices[4]. However, our method is more general.

2 Cubic 𝟐2\boldsymbol{2}bold_2-connected graphs with two Šoltés vertices

In the present section we prove the following result.

Theorem 4.

There exist infinitely many cubic 2222-connected graphs G𝐺Gitalic_G which contain at least two Šoltés vertices.

We prove Theorem4 by a sequence of lemmas.We start by giving several definitions.First, we define a graph Gtsubscript𝐺𝑡G_{t}italic_G start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT on 8t+88𝑡88t+88 italic_t + 8 vertices, where t1𝑡1t\geq 1italic_t ≥ 1.Take 2t2𝑡2t2 italic_t copies of the diamond graph (i.e.K4esubscript𝐾4𝑒K_{4}-eitalic_K start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT - italic_e) and connect their degree-2222 vertices, so that a ring of 2t2𝑡2t2 italic_t copies of K4esubscript𝐾4𝑒K_{4}-eitalic_K start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT - italic_e is formed.Add a disjoint 4444-cycle to that graph.Then subdivide one of the edges that connects two consecutive diamonds by two vertices, denote them by z1subscript𝑧1z_{1}italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and z2subscript𝑧2z_{2}italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, and connect z1subscript𝑧1z_{1}italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and z2subscript𝑧2z_{2}italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT with two opposite vertices of the 4444-cycle.Add a leaf to each remaning degree-2222 vertex of the 4444-cycle.Denote the resulting graph by Gtsubscript𝐺𝑡G_{t}italic_G start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT.For an illustration, see G3subscript𝐺3G_{3}italic_G start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT in Figure3.Note that Gtsubscript𝐺𝑡G_{t}italic_G start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT has exactly two leaves, denote them by v1subscript𝑣1v_{1}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, and all the remaining vertices have degree3333.Denote by u1subscript𝑢1u_{1}italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and u2subscript𝑢2u_{2}italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT the two vertices at the longest distance from v1subscript𝑣1v_{1}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT.This distance is dG(v1,u1)=dG(v1,u2)=3t+3subscript𝑑𝐺subscript𝑣1subscript𝑢1subscript𝑑𝐺subscript𝑣1subscript𝑢23𝑡3d_{G}(v_{1},u_{1})=d_{G}(v_{1},u_{2})=3t+3italic_d start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) = italic_d start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = 3 italic_t + 3 and also dG(v2,u1)=dG(v2,u2)=3t+3subscript𝑑𝐺subscript𝑣2subscript𝑢1subscript𝑑𝐺subscript𝑣2subscript𝑢23𝑡3d_{G}(v_{2},u_{1})=d_{G}(v_{2},u_{2})=3t+3italic_d start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) = italic_d start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = 3 italic_t + 3.Observe that Gtsubscript𝐺𝑡G_{t}italic_G start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT has an automorphism (a symmetry) fixing both v1subscript𝑣1v_{1}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, while interchanging u1subscript𝑢1u_{1}italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT withu2subscript𝑢2u_{2}italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

Now, we determine f(t)=W(Gtu1)W(Gt)𝑓𝑡𝑊subscript𝐺𝑡subscript𝑢1𝑊subscript𝐺𝑡f(t)=W(G_{t}-u_{1})-W(G_{t})italic_f ( italic_t ) = italic_W ( italic_G start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) - italic_W ( italic_G start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ).We compute f(t)𝑓𝑡f(t)italic_f ( italic_t ) by summing the contributions of all vertices (first the contribution of quadruples of vertices of all copies of K4esubscript𝐾4𝑒K_{4}-eitalic_K start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT - italic_e, and then the contribution of the vertices which are not in any copy of K4esubscript𝐾4𝑒K_{4}-eitalic_K start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT - italic_e).As the calculation is long and tedious, we present just the result

f(t)=16t38t226t14,𝑓𝑡16superscript𝑡38superscript𝑡226𝑡14f(t)=16t^{3}-8t^{2}-26t-14,italic_f ( italic_t ) = 16 italic_t start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 8 italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 26 italic_t - 14 ,(2)

which was checked by a computer.Actually, the exact value of f(t)𝑓𝑡f(t)italic_f ( italic_t ) is not important here.The crucial property is that for t𝑡titalic_t big enough, f(t)𝑓𝑡f(t)italic_f ( italic_t ) is positive.In fact, limtf(t)=subscript𝑡𝑓𝑡\lim_{t\to\infty}f(t)=\inftyroman_lim start_POSTSUBSCRIPT italic_t → ∞ end_POSTSUBSCRIPT italic_f ( italic_t ) = ∞; see also Section3,where a lower bound for f(t)𝑓𝑡f(t)italic_f ( italic_t ) is given.

To motivate the above definition, we briefly describe the main idea of the proof.We attach trees T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT to vertices v1subscript𝑣1v_{1}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT of Gtsubscript𝐺𝑡G_{t}italic_G start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT, and then we add edges to them so that the resulting graphH𝐻Hitalic_H will be cubic and 2222-connected.See Figure4 for an example.This will be done in three phases.

  1. P1)

    In the first phase, we will construct trees T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT to guarantee that vertices u1subscript𝑢1u_{1}italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and u2subscript𝑢2u_{2}italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are indeed Šoltés vertices.The vertices of T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT can be partitioned into several layers based on their distance to v1subscript𝑣1v_{1}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, respectively.The resulting graph will be denoted by Q𝑄Qitalic_Q.

  2. P2)

    In the second phase, we will add the ‘red’ edges, whose endpoints are in two consecutive layers, to graph Q𝑄Qitalic_Q.The resulting graph will be denoted by R𝑅Ritalic_R.The purpose of the second phase is to make sure that the sum of free valencies is even within each layer, making the next phase possible.Note that although the final graph H𝐻Hitalic_H is cubic, the intermediate graphs, Q𝑄Qitalic_Q and R𝑅Ritalic_R, are subcubic. The free valency of a vertex v𝑣vitalic_v in a subcubicgraph G𝐺Gitalic_G is 3degG(v)3subscriptdegree𝐺𝑣3-\deg_{G}(v)3 - roman_deg start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_v ).

  3. P3)

    In the last phase, we will add blue edges to R𝑅Ritalic_R in order to to obtain cycles and paths, so that the resulting graph H𝐻Hitalic_H will be cubic and 2222-connected.The endpoints of ‘blue’ edges will reside in the same layer of the forest T1T2subscript𝑇1subscript𝑇2T_{1}\cup T_{2}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∪ italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Adding ‘red’ and ‘blue’ edges has no influence on Šoltésness of u1subscript𝑢1u_{1}italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and u2subscript𝑢2u_{2}italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

Let us consider the resulting graph H𝐻Hitalic_H.Observe that if xV(H)V(Gt)𝑥𝑉𝐻𝑉subscript𝐺𝑡x\in V(H)\setminus V(G_{t})italic_x ∈ italic_V ( italic_H ) ∖ italic_V ( italic_G start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ), then we have wH(x)wHu1(x)=dH(u1,x)subscript𝑤𝐻𝑥subscript𝑤𝐻subscript𝑢1𝑥subscript𝑑𝐻subscript𝑢1𝑥w_{H}(x)-w_{H-u_{1}}(x)=d_{H}(u_{1},x)italic_w start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ( italic_x ) - italic_w start_POSTSUBSCRIPT italic_H - italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_x ) = italic_d start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x ). Clearly, every (u1,x)subscript𝑢1𝑥(u_{1},x)( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x )-path containsone of the vertices from {v1,v2}subscript𝑣1subscript𝑣2\{v_{1},v_{2}\}{ italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT }.Hence, for calculating W(H)W(Hu1)𝑊𝐻𝑊𝐻subscript𝑢1W(H)-W(H-u_{1})italic_W ( italic_H ) - italic_W ( italic_H - italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ), only the distance of the new vertices x𝑥xitalic_x to {v1,v2}subscript𝑣1subscript𝑣2\{v_{1},v_{2}\}{ italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT } matters.

We need to find suitable trees T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT rooted at v1subscript𝑣1v_{1}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, respectively.Each of these trees will have q𝑞qitalic_q vertices and their depth, say d𝑑ditalic_d, will be determined later.What next properties do T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT need to have?Let isubscript𝑖\ell_{i}roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT be the number of vertices of the forest T1T2subscript𝑇1subscript𝑇2T_{1}\cup T_{2}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∪ italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT at distance i𝑖iitalic_i, 1id1𝑖𝑑1\leq i\leq d1 ≤ italic_i ≤ italic_d, from {v1,v2}subscript𝑣1subscript𝑣2\{v_{1},v_{2}\}{ italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT }.Since the resulting graph will be cubic and 2222-connected, we have 214,228,2324,formulae-sequence2subscript142subscript282subscript3superscript242\leq\ell_{1}\leq 4,2\leq\ell_{2}\leq 8,2\leq\ell_{3}\leq 2^{4},\dots2 ≤ roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≤ 4 , 2 ≤ roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≤ 8 , 2 ≤ roman_ℓ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ≤ 2 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT , …and for the last value dsubscript𝑑\ell_{d}roman_ℓ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT we have 1d2d+11subscript𝑑superscript2𝑑11\leq\ell_{d}\leq 2^{d+1}1 ≤ roman_ℓ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ≤ 2 start_POSTSUPERSCRIPT italic_d + 1 end_POSTSUPERSCRIPT.The trees attached to v1subscript𝑣1v_{1}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT may be paths in which case we get 1=2==q=2subscript1subscript2subscript𝑞2\ell_{1}=\ell_{2}=\cdots=\ell_{q}=2roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ⋯ = roman_ℓ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT = 2 (since each of T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT have exactly q𝑞qitalic_q vertices).In this case the transmission of vjsubscript𝑣𝑗v_{j}italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT in Tjsubscript𝑇𝑗T_{j}italic_T start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT is biggest possible, 1j21𝑗21\leq j\leq 21 ≤ italic_j ≤ 2.In the other extremal situation the transmission of vjsubscript𝑣𝑗v_{j}italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT in Tjsubscript𝑇𝑗T_{j}italic_T start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT is smallest possible,1j21𝑗21\leq j\leq 21 ≤ italic_j ≤ 2, which results in i=2i+1subscript𝑖superscript2𝑖1\ell_{i}=2^{i+1}roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 2 start_POSTSUPERSCRIPT italic_i + 1 end_POSTSUPERSCRIPT, 1i<d1𝑖𝑑1\leq i<d1 ≤ italic_i < italic_d.If xV(H)V(Gt)𝑥𝑉𝐻𝑉subscript𝐺𝑡x\in V(H)\setminus V(G_{t})italic_x ∈ italic_V ( italic_H ) ∖ italic_V ( italic_G start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) is at distance i𝑖iitalic_i from {v1,v2}subscript𝑣1subscript𝑣2\{v_{1},v_{2}\}{ italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT }, then dH(u1,x)=3t+3+isubscript𝑑𝐻subscript𝑢1𝑥3𝑡3𝑖d_{H}(u_{1},x)=3t+3+iitalic_d start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x ) = 3 italic_t + 3 + italic_i.Denote by D𝐷Ditalic_D the sum of distances from all vertices of V(H)V(Gt)𝑉𝐻𝑉subscript𝐺𝑡V(H)\setminus V(G_{t})italic_V ( italic_H ) ∖ italic_V ( italic_G start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) to u1subscript𝑢1u_{1}italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT.Then

D=i=1d(3t+3+i)i.𝐷superscriptsubscript𝑖1𝑑3𝑡3𝑖subscript𝑖D=\sum_{i=1}^{d}(3t+3+i)\ell_{i}.italic_D = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ( 3 italic_t + 3 + italic_i ) roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT .(3)

Observe that we need to find a finite sequence (1,2,,d)subscript1subscript2subscript𝑑(\ell_{1},\ell_{2},\ldots,\ell_{d})( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , roman_ℓ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) so that f(t)=D𝑓𝑡𝐷f(t)=Ditalic_f ( italic_t ) = italic_D.As the resulting graph H𝐻Hitalic_H has to be cubic, we need to add an even number of vertices, 2q2𝑞2q2 italic_q, to the graph Gtsubscript𝐺𝑡G_{t}italic_G start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT.What are the bounds for D𝐷Ditalic_D?

First, we determine the lower bound; let us denote it by Dmsubscript𝐷𝑚D_{m}italic_D start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT.This bound will be obtained when isubscript𝑖\ell_{i}roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT attains the maximum possible value of 2i+1superscript2𝑖12^{i+1}2 start_POSTSUPERSCRIPT italic_i + 1 end_POSTSUPERSCRIPT for every 1id11𝑖𝑑11\leq i\leq d-11 ≤ italic_i ≤ italic_d - 1.In other words, we are attaching complete binary trees to v1subscript𝑣1v_{1}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.Let a=log2(2q+3)𝑎subscript22𝑞3a=\lfloor\log_{2}(2q+3)\rflooritalic_a = ⌊ roman_log start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( 2 italic_q + 3 ) ⌋. Recall that the depth of a complete binary tree with n𝑛nitalic_n vertices is log2(n)subscript2𝑛\lfloor\log_{2}(n)\rfloor⌊ roman_log start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_n ) ⌋ and note that in our case a1=d𝑎1𝑑a-1=ditalic_a - 1 = italic_d. Then

1subscript1\displaystyle\ell_{1}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT=4,absent4\displaystyle=4,= 4 ,
2subscript2\displaystyle\ell_{2}roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT=8,absent8\displaystyle=8,= 8 ,
\displaystyle\;\;\vdots
a2subscript𝑎2\displaystyle\ell_{a-2}roman_ℓ start_POSTSUBSCRIPT italic_a - 2 end_POSTSUBSCRIPT=2a1,absentsuperscript2𝑎1\displaystyle=2^{a-1},= 2 start_POSTSUPERSCRIPT italic_a - 1 end_POSTSUPERSCRIPT ,
a1subscript𝑎1\displaystyle\ell_{a-1}roman_ℓ start_POSTSUBSCRIPT italic_a - 1 end_POSTSUBSCRIPT=2qi=1a2i=2q2a+4.absent2𝑞superscriptsubscript𝑖1𝑎2subscript𝑖2𝑞superscript2𝑎4\displaystyle=2q-\sum_{i=1}^{a-2}\ell_{i}=2q-2^{a}+4.= 2 italic_q - ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a - 2 end_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 2 italic_q - 2 start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT + 4 .

The above sequence will be called the short sequence and denoted by Lmsubscript𝐿𝑚L_{m}italic_L start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT.Using the formula i=1aixi1=(axa+1(a+1)xa+1)/(x1)2superscriptsubscript𝑖1𝑎𝑖superscript𝑥𝑖1𝑎superscript𝑥𝑎1𝑎1superscript𝑥𝑎1superscript𝑥12\sum_{i=1}^{a}ix^{i-1}=(ax^{a+1}-(a+1)x^{a}+1)/(x-1)^{2}∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT italic_i italic_x start_POSTSUPERSCRIPT italic_i - 1 end_POSTSUPERSCRIPT = ( italic_a italic_x start_POSTSUPERSCRIPT italic_a + 1 end_POSTSUPERSCRIPT - ( italic_a + 1 ) italic_x start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT + 1 ) / ( italic_x - 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, we get

Dmsubscript𝐷𝑚\displaystyle D_{m}italic_D start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT=i=1a2(3t+3+i)2i+1+(3t+a+2)(2q2a+4)absentsuperscriptsubscript𝑖1𝑎23𝑡3𝑖superscript2𝑖13𝑡𝑎22𝑞superscript2𝑎4\displaystyle=\sum_{i=1}^{a-2}(3t+3+i)2^{i+1}+(3t+a+2)(2q-2^{a}+4)= ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a - 2 end_POSTSUPERSCRIPT ( 3 italic_t + 3 + italic_i ) 2 start_POSTSUPERSCRIPT italic_i + 1 end_POSTSUPERSCRIPT + ( 3 italic_t + italic_a + 2 ) ( 2 italic_q - 2 start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT + 4 )(4)
=(3t+1)2q+i=1a2(i+2)2i+1+(a+1)(2q2a+4)+221+1205absent3𝑡12𝑞superscriptsubscript𝑖1𝑎2𝑖2superscript2𝑖1𝑎12𝑞superscript2𝑎42superscript211superscript205\displaystyle=(3t+1)2q+\sum_{i=1}^{a-2}(i+2)2^{i+1}+(a+1)(2q-2^{a}+4)+2\cdot 2%^{1}+1\cdot 2^{0}-5= ( 3 italic_t + 1 ) 2 italic_q + ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a - 2 end_POSTSUPERSCRIPT ( italic_i + 2 ) 2 start_POSTSUPERSCRIPT italic_i + 1 end_POSTSUPERSCRIPT + ( italic_a + 1 ) ( 2 italic_q - 2 start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT + 4 ) + 2 ⋅ 2 start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT + 1 ⋅ 2 start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT - 5
=(3t+1)2q+i=1ai2i1+(a+1)(2q2a+4)5absent3𝑡12𝑞superscriptsubscript𝑖1𝑎𝑖superscript2𝑖1𝑎12𝑞superscript2𝑎45\displaystyle=(3t+1)2q+\sum_{i=1}^{a}i2^{i-1}+(a+1)(2q-2^{a}+4)-5= ( 3 italic_t + 1 ) 2 italic_q + ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT italic_i 2 start_POSTSUPERSCRIPT italic_i - 1 end_POSTSUPERSCRIPT + ( italic_a + 1 ) ( 2 italic_q - 2 start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT + 4 ) - 5
=(3t+1)2q+a2a+1(a+1)2a+1+(a+1)2q(a+1)2a+4(a+1)5absent3𝑡12𝑞𝑎superscript2𝑎1𝑎1superscript2𝑎1𝑎12𝑞𝑎1superscript2𝑎4𝑎15\displaystyle=(3t+1)2q+a2^{a+1}-(a+1)2^{a}+1+(a+1)2q-(a+1)2^{a}+4(a+1)-5= ( 3 italic_t + 1 ) 2 italic_q + italic_a 2 start_POSTSUPERSCRIPT italic_a + 1 end_POSTSUPERSCRIPT - ( italic_a + 1 ) 2 start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT + 1 + ( italic_a + 1 ) 2 italic_q - ( italic_a + 1 ) 2 start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT + 4 ( italic_a + 1 ) - 5
=(3t+1)2q+a2a+1(a+1)2a+1+(a+1)2q+4aabsent3𝑡12𝑞𝑎superscript2𝑎1𝑎1superscript2𝑎1𝑎12𝑞4𝑎\displaystyle=(3t+1)2q+a2^{a+1}-(a+1)2^{a+1}+(a+1)2q+4a= ( 3 italic_t + 1 ) 2 italic_q + italic_a 2 start_POSTSUPERSCRIPT italic_a + 1 end_POSTSUPERSCRIPT - ( italic_a + 1 ) 2 start_POSTSUPERSCRIPT italic_a + 1 end_POSTSUPERSCRIPT + ( italic_a + 1 ) 2 italic_q + 4 italic_a
=(3t+1)2q2a+1+(a+1)2q+4a.absent3𝑡12𝑞superscript2𝑎1𝑎12𝑞4𝑎\displaystyle=(3t+1)2q-2^{a+1}+(a+1)2q+4a.= ( 3 italic_t + 1 ) 2 italic_q - 2 start_POSTSUPERSCRIPT italic_a + 1 end_POSTSUPERSCRIPT + ( italic_a + 1 ) 2 italic_q + 4 italic_a .

Now we find the upper bound Dmsuperscript𝐷𝑚D^{m}italic_D start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT for D𝐷Ditalic_D.In this case 1=2==q=2subscript1subscript2subscript𝑞2\ell_{1}=\ell_{2}=\dots=\ell_{q}=2roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ⋯ = roman_ℓ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT = 2; this sequence will be called the long sequence and denoted by Lmsuperscript𝐿𝑚L^{m}italic_L start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT. Therefore,

Dmsuperscript𝐷𝑚\displaystyle D^{m}italic_D start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT=2(3t+4)+2(3t+5)++2(3t+3+q)absent23𝑡423𝑡523𝑡3𝑞\displaystyle=2(3t+4)+2(3t+5)+\dots+2(3t+3+q)= 2 ( 3 italic_t + 4 ) + 2 ( 3 italic_t + 5 ) + ⋯ + 2 ( 3 italic_t + 3 + italic_q )(5)
=(3t+3)2q+2i=1qiabsent3𝑡32𝑞2superscriptsubscript𝑖1𝑞𝑖\displaystyle=(3t+3)2q+2\sum_{i=1}^{q}i= ( 3 italic_t + 3 ) 2 italic_q + 2 ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_q end_POSTSUPERSCRIPT italic_i
=(3t+1)2q+q2+5q.absent3𝑡12𝑞superscript𝑞25𝑞\displaystyle=(3t+1)2q+q^{2}+5q.= ( 3 italic_t + 1 ) 2 italic_q + italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 5 italic_q .

Note that Dmsubscript𝐷𝑚D_{m}italic_D start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT and Dmsuperscript𝐷𝑚D^{m}italic_D start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT are functions of q𝑞qitalic_q and t𝑡titalic_t.

Lemma 5.

Let t3𝑡3t\geq 3italic_t ≥ 3. Then there exists q𝑞qitalic_q, such that Dmf(t)Dmsubscript𝐷𝑚𝑓𝑡superscript𝐷𝑚D_{m}\leq f(t)\leq D^{m}italic_D start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ≤ italic_f ( italic_t ) ≤ italic_D start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT.

Proof.

Observe that if q4ttsimilar-to𝑞4𝑡𝑡q\sim 4t\sqrt{t}italic_q ∼ 4 italic_t square-root start_ARG italic_t end_ARG then we have Dmf(t)Dmsubscript𝐷𝑚𝑓𝑡superscript𝐷𝑚D_{m}\leq f(t)\leq D^{m}italic_D start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ≤ italic_f ( italic_t ) ≤ italic_D start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT for large enough t𝑡titalic_t.For small values of t𝑡titalic_t we computed the minimum and maximum value of q𝑞qitalic_q that satisfies the conditionof the lemma; see Table4.∎

Note that the value q𝑞qitalic_q in Lemma5 is uniquely determined only for t=3𝑡3t=3italic_t = 3.For larger values of t𝑡titalic_t we get a range of options. Any q𝑞qitalic_q between qminsubscript𝑞minq_{\text{min}}italic_q start_POSTSUBSCRIPT min end_POSTSUBSCRIPT and qmaxsubscript𝑞maxq_{\text{max}}italic_q start_POSTSUBSCRIPT max end_POSTSUBSCRIPT can beused. Moreover, different values of q𝑞qitalic_q lead to non-isomorphic graphs H𝐻Hitalic_H.

t3456789101112131415161718qmin917273850647894110128146165185205227249qmax921385985116152192238288344405471542617698𝑡3456789101112131415161718missing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionsubscript𝑞min917273850647894110128146165185205227249missing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionsubscript𝑞max921385985116152192238288344405471542617698\begin{array}[]{r||rrrrrrrrrrrrrrrr}t&3&4&5&6&7&8&9&10&11&12&13&14&15&16&17&18%\\\hline\cr q_{\text{min}}&9&17&27&38&50&64&78&94&110&128&146&165&185&205&227&24%9\\\hline\cr q_{\text{max}}&9&21&38&59&85&116&152&192&238&288&344&405&471&542&617%&698\end{array}start_ARRAY start_ROW start_CELL italic_t end_CELL start_CELL 3 end_CELL start_CELL 4 end_CELL start_CELL 5 end_CELL start_CELL 6 end_CELL start_CELL 7 end_CELL start_CELL 8 end_CELL start_CELL 9 end_CELL start_CELL 10 end_CELL start_CELL 11 end_CELL start_CELL 12 end_CELL start_CELL 13 end_CELL start_CELL 14 end_CELL start_CELL 15 end_CELL start_CELL 16 end_CELL start_CELL 17 end_CELL start_CELL 18 end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_q start_POSTSUBSCRIPT min end_POSTSUBSCRIPT end_CELL start_CELL 9 end_CELL start_CELL 17 end_CELL start_CELL 27 end_CELL start_CELL 38 end_CELL start_CELL 50 end_CELL start_CELL 64 end_CELL start_CELL 78 end_CELL start_CELL 94 end_CELL start_CELL 110 end_CELL start_CELL 128 end_CELL start_CELL 146 end_CELL start_CELL 165 end_CELL start_CELL 185 end_CELL start_CELL 205 end_CELL start_CELL 227 end_CELL start_CELL 249 end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_q start_POSTSUBSCRIPT max end_POSTSUBSCRIPT end_CELL start_CELL 9 end_CELL start_CELL 21 end_CELL start_CELL 38 end_CELL start_CELL 59 end_CELL start_CELL 85 end_CELL start_CELL 116 end_CELL start_CELL 152 end_CELL start_CELL 192 end_CELL start_CELL 238 end_CELL start_CELL 288 end_CELL start_CELL 344 end_CELL start_CELL 405 end_CELL start_CELL 471 end_CELL start_CELL 542 end_CELL start_CELL 617 end_CELL start_CELL 698 end_CELL end_ROW end_ARRAY

t19202122232425262728293031qmin272295319344370396422450478506535565595qmax7858769731075118212941411153316611795193320772225𝑡19202122232425262728293031missing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionsubscript𝑞min272295319344370396422450478506535565595missing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionsubscript𝑞max7858769731075118212941411153316611795193320772225\begin{array}[]{r||rrrrrrrrrrrrr}t&19&20&21&22&23&24&25&26&27&28&29&30&31\\\hline\cr q_{\text{min}}&272&295&319&344&370&396&422&450&478&506&535&565&595\\\hline\cr q_{\text{max}}&785&876&973&1075&1182&1294&1411&1533&1661&1795&1933&2%077&2225\end{array}start_ARRAY start_ROW start_CELL italic_t end_CELL start_CELL 19 end_CELL start_CELL 20 end_CELL start_CELL 21 end_CELL start_CELL 22 end_CELL start_CELL 23 end_CELL start_CELL 24 end_CELL start_CELL 25 end_CELL start_CELL 26 end_CELL start_CELL 27 end_CELL start_CELL 28 end_CELL start_CELL 29 end_CELL start_CELL 30 end_CELL start_CELL 31 end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_q start_POSTSUBSCRIPT min end_POSTSUBSCRIPT end_CELL start_CELL 272 end_CELL start_CELL 295 end_CELL start_CELL 319 end_CELL start_CELL 344 end_CELL start_CELL 370 end_CELL start_CELL 396 end_CELL start_CELL 422 end_CELL start_CELL 450 end_CELL start_CELL 478 end_CELL start_CELL 506 end_CELL start_CELL 535 end_CELL start_CELL 565 end_CELL start_CELL 595 end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_q start_POSTSUBSCRIPT max end_POSTSUBSCRIPT end_CELL start_CELL 785 end_CELL start_CELL 876 end_CELL start_CELL 973 end_CELL start_CELL 1075 end_CELL start_CELL 1182 end_CELL start_CELL 1294 end_CELL start_CELL 1411 end_CELL start_CELL 1533 end_CELL start_CELL 1661 end_CELL start_CELL 1795 end_CELL start_CELL 1933 end_CELL start_CELL 2077 end_CELL start_CELL 2225 end_CELL end_ROW end_ARRAY

Now, we show that for every integer D𝐷Ditalic_D, DmDDmsubscript𝐷𝑚𝐷superscript𝐷𝑚D_{m}\leq D\leq D^{m}italic_D start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ≤ italic_D ≤ italic_D start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT, there exists a finite sequence (1,2,,d)subscript1subscript2subscript𝑑(\ell_{1},\ell_{2},\ldots,\ell_{d})( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , roman_ℓ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) which realises D𝐷Ditalic_D.Moreover, the graph Gtsubscript𝐺𝑡G_{t}italic_G start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT can be extended to H𝐻Hitalic_H by attaching trees T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT that haveisubscript𝑖\ell_{i}roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT vertices at distance i𝑖iitalic_i from {v1,v2}subscript𝑣1subscript𝑣2\{v_{1},v_{2}\}{ italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT }, such that H𝐻Hitalic_H is a 2222-connected cubic graph.

Let us define an operation \mathcal{M}caligraphic_M that modifies one such sequence L=(1,2,,d)𝐿subscript1subscript2subscript𝑑L=(\ell_{1},\ell_{2},\ldots,\ell_{d})italic_L = ( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , roman_ℓ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ).

Definition 6.

Let L=(1,2,,d)𝐿subscript1subscript2subscript𝑑L=(\ell_{1},\ell_{2},\ldots,\ell_{d})italic_L = ( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , roman_ℓ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ).Set d+1=0subscript𝑑10\ell_{d+1}=0roman_ℓ start_POSTSUBSCRIPT italic_d + 1 end_POSTSUBSCRIPT = 0.Let i𝑖iitalic_i be the smallest value such that i3subscript𝑖3\ell_{i}\geq 3roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≥ 3 and either

  1. (i)

    2(i1)>i+1+12subscript𝑖1subscript𝑖112(\ell_{i}-1)>\ell_{i+1}+12 ( roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - 1 ) > roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT + 1 or

  2. (ii)

    i=i+1=3subscript𝑖subscript𝑖13\ell_{i}=\ell_{i+1}=3roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT = 3.

We say that (L)=(1,2,,d)𝐿subscriptsuperscript1subscriptsuperscript2subscriptsuperscript𝑑\mathcal{M}(L)=(\ell^{\prime}_{1},\ell^{\prime}_{2},\ldots,\ell^{\prime}_{d})caligraphic_M ( italic_L ) = ( roman_ℓ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , roman_ℓ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , roman_ℓ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) is a modification of sequence L𝐿Litalic_L if j=jsuperscriptsubscript𝑗subscript𝑗\ell_{j}^{\prime}=\ell_{j}roman_ℓ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = roman_ℓ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT for all j𝑗jitalic_j, 1jd+11𝑗𝑑11\leq j\leq d+11 ≤ italic_j ≤ italic_d + 1, except for j{i,i+1}𝑗𝑖𝑖1j\in\{i,i+1\}italic_j ∈ { italic_i , italic_i + 1 }, for which i=i1superscriptsubscript𝑖subscript𝑖1\ell_{i}^{\prime}=\ell_{i}-1roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - 1 and i+1=i+1+1superscriptsubscript𝑖1subscript𝑖11\ell_{i+1}^{\prime}=\ell_{i+1}+1roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT + 1.

Lemma 7.

Let t1𝑡1t\geq 1italic_t ≥ 1 and q0𝑞0q\geq 0italic_q ≥ 0. For every D𝐷Ditalic_D, DmDDmsubscript𝐷𝑚𝐷superscript𝐷𝑚D_{m}\leq D\leq D^{m}italic_D start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ≤ italic_D ≤ italic_D start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT, there existsa finite sequence L=(1,2,,d)𝐿subscript1subscript2subscript𝑑L=(\ell_{1},\ell_{2},\ldots,\ell_{d})italic_L = ( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , roman_ℓ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ), such that

  1. (i)

    i=1di=2qsuperscriptsubscript𝑖1𝑑subscript𝑖2𝑞\sum_{i=1}^{d}\ell_{i}=2q∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 2 italic_q;

  2. (ii)

    2i2i+12subscript𝑖superscript2𝑖12\leq\ell_{i}\leq 2^{i+1}2 ≤ roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≤ 2 start_POSTSUPERSCRIPT italic_i + 1 end_POSTSUPERSCRIPT for i<d𝑖𝑑i<ditalic_i < italic_d and 1d2d+11subscript𝑑superscript2𝑑11\leq\ell_{d}\leq 2^{d+1}1 ≤ roman_ℓ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ≤ 2 start_POSTSUPERSCRIPT italic_d + 1 end_POSTSUPERSCRIPT;

  3. (iii)

    i+12isubscript𝑖12subscript𝑖\ell_{i+1}\leq 2\ell_{i}roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT ≤ 2 roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT.

Namely, L=DDm(Lm)𝐿superscript𝐷subscript𝐷𝑚subscript𝐿𝑚L=\mathcal{M}^{D-D_{m}}(L_{m})italic_L = caligraphic_M start_POSTSUPERSCRIPT italic_D - italic_D start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_L start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ).

Proof.

We start with the short sequence Lm=(4,8,16,)subscript𝐿𝑚4816L_{m}=(4,8,16,\dots)italic_L start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT = ( 4 , 8 , 16 , … ). It clearly satisfies conditions (i) to (iii). We have alreadyseen that Lmsubscript𝐿𝑚L_{m}italic_L start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT realises Dmsubscript𝐷𝑚D_{m}italic_D start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT. This established the base of induction.

Every other D𝐷Ditalic_D can be realised by a sequence that is obtained from Lmsubscript𝐿𝑚L_{m}italic_L start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT by iteratively applying operation \mathcal{M}caligraphic_M.Assume that after (D1)Dm𝐷1subscript𝐷𝑚(D-1)-D_{m}( italic_D - 1 ) - italic_D start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT steps we obtained the sequence L=(1,2,,d)𝐿subscript1subscript2subscript𝑑L=(\ell_{1},\ell_{2},\dots,\ell_{d})italic_L = ( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , roman_ℓ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) which realises D1𝐷1D-1italic_D - 1.Obviously, (L)𝐿\mathcal{M}(L)caligraphic_M ( italic_L ) realises D𝐷Ditalic_D. It is easy to check that conditions (i) to (iii) are satisfied for (L)𝐿\mathcal{M}(L)caligraphic_M ( italic_L ).∎

Next, we prove two additional properties that hold when operation \mathcal{M}caligraphic_M is iteratively applied on Lmsubscript𝐿𝑚L_{m}italic_L start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT.

Lemma 8.

Let t1𝑡1t\geq 1italic_t ≥ 1 and q0𝑞0q\geq 0italic_q ≥ 0. Let L=(1,2,,d)𝐿subscript1subscript2subscript𝑑L=(\ell_{1},\ell_{2},\ldots,\ell_{d})italic_L = ( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , roman_ℓ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) be obtained from Lmsubscript𝐿𝑚L_{m}italic_L start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT by iteratively applying operation \mathcal{M}caligraphic_M.Then the following holds:

  1. (i)

    If (ii) of Definition6 applies, then j=2subscript𝑗2\ell_{j}=2roman_ℓ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = 2 for all j<i𝑗𝑖j<iitalic_j < italic_i.

  2. (ii)

    If index i𝑖iitalic_i in Definition6 is such that i+1=0subscript𝑖10\ell_{i+1}=0roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT = 0, then i4subscript𝑖4\ell_{i}\geq 4roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≥ 4.

Proof.

(i): Observe that if part (ii) of Definition6 applies and i2𝑖2i\geq 2italic_i ≥ 2, then i1=2subscript𝑖12\ell_{i-1}=2roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT = 2, since otherwise i1𝑖1i-1italic_i - 1 satisfiesthe assumption of the definition, thus i𝑖iitalic_i is not the smallest such value.Moreover, if there is k𝑘kitalic_k, k<i𝑘𝑖k<iitalic_k < italic_i, with k3subscript𝑘3\ell_{k}\geq 3roman_ℓ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≥ 3, then choose the largest possible k𝑘kitalic_k with this property.Then k+1=k+2==i1=2subscript𝑘1subscript𝑘2subscript𝑖12\ell_{k+1}=\ell_{k+2}=\dots=\ell_{i-1}=2roman_ℓ start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT = roman_ℓ start_POSTSUBSCRIPT italic_k + 2 end_POSTSUBSCRIPT = ⋯ = roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT = 2.Hence, k𝑘kitalic_k satisfies the assumption of the definition, a contradiction.It means that if part (ii) of the definition applies, then i1=i2==1=2subscript𝑖1subscript𝑖2subscript12\ell_{i-1}=\ell_{i-2}=\dots=\ell_{1}=2roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT = roman_ℓ start_POSTSUBSCRIPT italic_i - 2 end_POSTSUBSCRIPT = ⋯ = roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 2.

(ii): If i+1=0subscript𝑖10\ell_{i+1}=0roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT = 0 then clearly i3subscript𝑖3\ell_{i}\geq 3roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≥ 3.Suppose that i=3subscript𝑖3\ell_{i}=3roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 3. Then i1=2subscript𝑖12\ell_{i-1}=2roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT = 2, since otherwise the assumptions apply to i1𝑖1i-1italic_i - 1.As 2q2𝑞2q2 italic_q is even, there must be k<i𝑘𝑖k<iitalic_k < italic_i such that k3subscript𝑘3\ell_{k}\geq 3roman_ℓ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≥ 3.Let k𝑘kitalic_k be the largest possible value with this property.Then the assumptions apply to k𝑘kitalic_k, a contradiction.Thus, if i+1=0subscript𝑖10\ell_{i+1}=0roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT = 0 then i4subscript𝑖4\ell_{i}\geq 4roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≥ 4.∎

Note that part (ii) of Lemma8 means that in the sequence L=(L)superscript𝐿𝐿L^{\prime}=\mathcal{M}(L)italic_L start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = caligraphic_M ( italic_L ),i3superscriptsubscript𝑖3\ell_{i}^{\prime}\geq 3roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≥ 3 and i+1=1superscriptsubscript𝑖11\ell_{i+1}^{\prime}=1roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = 1. The corresponding graph H𝐻Hitalic_H will thus have a single vertex of degree 3333 in the final layer.

Example 9.

For an illustration, the sequence of sequences

Lm,(Lm),2(Lm),3(Lm),subscript𝐿𝑚subscript𝐿𝑚superscript2subscript𝐿𝑚superscript3subscript𝐿𝑚L_{m},\ \mathcal{M}(L_{m}),\ \mathcal{M}^{2}(L_{m}),\ \mathcal{M}^{3}(L_{m}),\ \ldotsitalic_L start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , caligraphic_M ( italic_L start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) , caligraphic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_L start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) , caligraphic_M start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( italic_L start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) , …

for 2q=202𝑞202q=202 italic_q = 20 is

(4,8,8),488\displaystyle(4,8,8),( 4 , 8 , 8 ) ,(4,5,6,5),4565\displaystyle(4,5,6,5),( 4 , 5 , 6 , 5 ) ,(3,4,5,6,2),34562\displaystyle(3,4,5,6,2),( 3 , 4 , 5 , 6 , 2 ) ,(2,3,4,7,4),23474\displaystyle(2,3,4,7,4),( 2 , 3 , 4 , 7 , 4 ) ,(2,2,3,5,7,1),223571\displaystyle(2,2,3,5,7,1),( 2 , 2 , 3 , 5 , 7 , 1 ) ,
(4,7,9),479\displaystyle(4,7,9),( 4 , 7 , 9 ) ,(4,4,7,5),4475\displaystyle(4,4,7,5),( 4 , 4 , 7 , 5 ) ,(3,4,4,7,2),34472\displaystyle(3,4,4,7,2),( 3 , 4 , 4 , 7 , 2 ) ,(2,3,4,6,5),23465\displaystyle(2,3,4,6,5),( 2 , 3 , 4 , 6 , 5 ) ,(2,2,3,5,6,2),223562\displaystyle(2,2,3,5,6,2),( 2 , 2 , 3 , 5 , 6 , 2 ) ,
(4,6,10),4610\displaystyle(4,6,10),( 4 , 6 , 10 ) ,(3,5,7,5),3575\displaystyle(3,5,7,5),( 3 , 5 , 7 , 5 ) ,(3,3,5,7,2),33572\displaystyle(3,3,5,7,2),( 3 , 3 , 5 , 7 , 2 ) ,(2,3,4,5,6),23456\displaystyle(2,3,4,5,6),( 2 , 3 , 4 , 5 , 6 ) ,(2,2,3,4,7,2),223472\displaystyle(2,2,3,4,7,2),( 2 , 2 , 3 , 4 , 7 , 2 ) ,
(4,6,9,1),4691\displaystyle(4,6,9,1),( 4 , 6 , 9 , 1 ) ,(3,5,6,6),3566\displaystyle(3,5,6,6),( 3 , 5 , 6 , 6 ) ,(2,4,5,7,2),24572\displaystyle(2,4,5,7,2),( 2 , 4 , 5 , 7 , 2 ) ,(2,3,4,4,7),23447\displaystyle(2,3,4,4,7),( 2 , 3 , 4 , 4 , 7 ) ,(2,2,3,4,6,3),223463\displaystyle(2,2,3,4,6,3),( 2 , 2 , 3 , 4 , 6 , 3 ) ,
(4,6,8,2),4682\displaystyle(4,6,8,2),( 4 , 6 , 8 , 2 ) ,(3,4,7,6),3476\displaystyle(3,4,7,6),( 3 , 4 , 7 , 6 ) ,(2,4,5,6,3),24563\displaystyle(2,4,5,6,3),( 2 , 4 , 5 , 6 , 3 ) ,(2,3,3,5,7),23357\displaystyle(2,3,3,5,7),( 2 , 3 , 3 , 5 , 7 ) ,(2,2,3,4,5,4),223454\displaystyle(2,2,3,4,5,4),( 2 , 2 , 3 , 4 , 5 , 4 ) ,
(4,5,9,2),4592\displaystyle(4,5,9,2),( 4 , 5 , 9 , 2 ) ,(3,4,6,7),3467\displaystyle(3,4,6,7),( 3 , 4 , 6 , 7 ) ,(2,4,4,7,3),24473\displaystyle(2,4,4,7,3),( 2 , 4 , 4 , 7 , 3 ) ,(2,2,4,5,7),22457\displaystyle(2,2,4,5,7),( 2 , 2 , 4 , 5 , 7 ) ,etc.
(4,5,8,3),4583\displaystyle(4,5,8,3),( 4 , 5 , 8 , 3 ) ,(3,4,5,8),3458\displaystyle(3,4,5,8),( 3 , 4 , 5 , 8 ) ,(2,3,5,7,3),23573\displaystyle(2,3,5,7,3),( 2 , 3 , 5 , 7 , 3 ) ,(2,2,4,5,6,1),224561\displaystyle(2,2,4,5,6,1),( 2 , 2 , 4 , 5 , 6 , 1 ) ,
(4,5,7,4),4574\displaystyle(4,5,7,4),( 4 , 5 , 7 , 4 ) ,(3,4,5,7,1),34571\displaystyle(3,4,5,7,1),( 3 , 4 , 5 , 7 , 1 ) ,(2,3,5,6,4),23564\displaystyle(2,3,5,6,4),( 2 , 3 , 5 , 6 , 4 ) ,(2,2,4,4,7,1),224471\displaystyle(2,2,4,4,7,1),( 2 , 2 , 4 , 4 , 7 , 1 ) ,

There are altogether 67676767 sequences since DmDm=66superscript𝐷𝑚subscript𝐷𝑚66D^{m}-D_{m}=66italic_D start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT - italic_D start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT = 66 when 2q=202𝑞202q=202 italic_q = 20.

Lemma 10.

Let t3𝑡3t\geq 3italic_t ≥ 3. There exist rooted trees T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT such that vertices u1subscript𝑢1u_{1}italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and u2subscript𝑢2u_{2}italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are Šoltés vertices inthe graph Q𝑄Qitalic_Q obtained from Gtsubscript𝐺𝑡G_{t}italic_G start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT by attaching T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT to vertices v1subscript𝑣1v_{1}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT andv2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

Proof.

By Lemma5, there exists q𝑞qitalic_q such that Dmf(t)Dmsubscript𝐷𝑚𝑓𝑡superscript𝐷𝑚D_{m}\leq f(t)\leq D^{m}italic_D start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ≤ italic_f ( italic_t ) ≤ italic_D start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT.From Lemma7, we obtain the sequence L𝐿Litalic_L, which gives us the appropriate number of vertices inevery layer of the forest T=T1T2𝑇subscript𝑇1subscript𝑇2T=T_{1}\cup T_{2}italic_T = italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∪ italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. This ensures that v1subscript𝑣1v_{1}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are Šoltés vertices in Q𝑄Qitalic_Q.

Now, we construct a graph Q𝑄Qitalic_Q containing Gtsubscript𝐺𝑡G_{t}italic_G start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT and realising L𝐿Litalic_L.Let Tjsubscript𝑇𝑗T_{j}italic_T start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT be the tree rooted at vjsubscript𝑣𝑗v_{j}italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT, 1j21𝑗21\leq j\leq 21 ≤ italic_j ≤ 2.Then T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT will have i/2subscript𝑖2\lceil\ell_{i}/2\rceil⌈ roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / 2 ⌉ vertices at distance i𝑖iitalic_i from v1subscript𝑣1v_{1}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT will have i/2subscript𝑖2\lfloor\ell_{i}/2\rfloor⌊ roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / 2 ⌋ vertices at distance i𝑖iitalic_i from v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.Observe that it is possible to construct both T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.We have two possibilities.

Case 1: i=2i1subscript𝑖2subscript𝑖1\ell_{i}=2\ell_{i-1}roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 2 roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT.Then either i=2i+1,i1=2i,,1=4formulae-sequencesubscript𝑖superscript2𝑖1formulae-sequencesubscript𝑖1superscript2𝑖subscript14\ell_{i}=2^{i+1},\ell_{i-1}=2^{i},\ldots,\ell_{1}=4roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 2 start_POSTSUPERSCRIPT italic_i + 1 end_POSTSUPERSCRIPT , roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT = 2 start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT , … , roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 4 and on the first i𝑖iitalic_i levels both T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are complete binary trees of height i𝑖iitalic_i; or 1=2==i1=2subscript1subscript2subscript𝑖12\ell_{1}=\ell_{2}=\dots=\ell_{i-1}=2roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ⋯ = roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT = 2 and i=4subscript𝑖4\ell_{i}=4roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 4, which means that both T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT contain one vertex at levels 1,2,,i112𝑖11,2,\dots,i-11 , 2 , … , italic_i - 1 and two vertices at level i𝑖iitalic_i.

Case 2: i2i11subscript𝑖2subscript𝑖11\ell_{i}\leq 2\ell_{i-1}-1roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≤ 2 roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT - 1.If i1subscript𝑖1\ell_{i-1}roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT is even then we can construct i𝑖iitalic_i-th level of both T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, and at least one vertex of level i1𝑖1i-1italic_i - 1 of T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT will have degree less than 3333.On the other hand, if i1subscript𝑖1\ell_{i-1}roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT is odd then T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT has only (i11)/2subscript𝑖112(\ell_{i-1}-1)/2( roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT - 1 ) / 2 vertices at level i1𝑖1i-1italic_i - 1.However, it has i/2subscript𝑖2\lfloor\ell_{i}/2\rfloor⌊ roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / 2 ⌋ vertices at level i𝑖iitalic_i and i/2(2i11)/2=i11=2i1/2subscript𝑖22subscript𝑖112subscript𝑖112subscript𝑖12\lfloor\ell_{i}/2\rfloor\leq\lfloor(2\ell_{i-1}-1)/2\rfloor=\ell_{i-1}-1=2%\lfloor\ell_{i-1}/2\rfloor⌊ roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / 2 ⌋ ≤ ⌊ ( 2 roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT - 1 ) / 2 ⌋ = roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT - 1 = 2 ⌊ roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT / 2 ⌋, so in T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, the number of vertices at level i𝑖iitalic_i is at most twice the number of vertices at level i1𝑖1i-1italic_i - 1.In this case, at least one vertex at level i1𝑖1i-1italic_i - 1 in T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT will have degree less than 3333.This concludes Case 2.∎

We construct the trees T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT so that at each level we minimise the number of vertices of degree 3333.Observe that then there is no level in which there are vertices of degree 1111 and also vertices of degree 3333.

Consider v1subscript𝑣1v_{1}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT as vertices of level 00, and set 0=2subscript02\ell_{0}=2roman_ℓ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 2.We plan to add edges within levels (i.e.‘blue’ edges) to create a cubic graph, but sometimes we must also add edges between consecutive levels (i.e.‘red’ edges).First, we add necessary edges connecting vertices of different levels.For every i1𝑖1i\geq 1italic_i ≥ 1, if j=0ijsuperscriptsubscript𝑗0𝑖subscript𝑗\sum_{j=0}^{i}\ell_{j}∑ start_POSTSUBSCRIPT italic_j = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT is odd then add an edge joining a vertex (of degree 2absent2\leq 2≤ 2) of (i1)𝑖1(i-1)( italic_i - 1 )-th level with a vertex of i𝑖iitalic_i-th level.

Lemma 11.

It is possible to add edges to Q𝑄Qitalic_Q as described above, so that the resulting graph has no parallel edges and it is subcubic.

Proof.

We add the red edges step by step starting with level 1111, together with creating the trees T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.And we show that at each level it is possible to add a required edge.We distinguish two cases:

Case 1: There is no red edge between levels i2𝑖2i-2italic_i - 2 and i1𝑖1i-1italic_i - 1.If 2i1=i2subscript𝑖1subscript𝑖2\ell_{i-1}=\ell_{i}2 roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT = roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, then either (a) 1=2==i1=2subscript1subscript2subscript𝑖12\ell_{1}=\ell_{2}=\dots=\ell_{i-1}=2roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ⋯ = roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT = 2 and i=4subscript𝑖4\ell_{i}=4roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 4, or (b) j=2j+1subscript𝑗superscript2𝑗1\ell_{j}=2^{j+1}roman_ℓ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = 2 start_POSTSUPERSCRIPT italic_j + 1 end_POSTSUPERSCRIPT for all ji𝑗𝑖j\leq iitalic_j ≤ italic_i.In both subcases j=0ijsuperscriptsubscript𝑗0𝑖subscript𝑗\sum_{j=0}^{i}\ell_{j}∑ start_POSTSUBSCRIPT italic_j = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT is even, and no red edge is added between levels i1𝑖1i-1italic_i - 1 and i𝑖iitalic_i.Suppose that 2i1>i2subscript𝑖1subscript𝑖2\ell_{i-1}>\ell_{i}2 roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT > roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT.Then there is a vertex at (i1)𝑖1(i-1)( italic_i - 1 )-st level, say x𝑥xitalic_x, whose degree is less than 3333.If 2i>i+12subscript𝑖subscript𝑖12\ell_{i}>\ell_{i+1}2 roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT > roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT, then there is a vertex at i𝑖iitalic_i-th level, say y𝑦yitalic_y, whose degree is also less than 3333, and we can add the edge xy𝑥𝑦xyitalic_x italic_y.(Observe that if we add these additional edges together with the construction of trees T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, then we do not create parallel edges.The only problem occures when x𝑥xitalic_x is the unique vertex at level i1𝑖1i-1italic_i - 1 in Tjsubscript𝑇𝑗T_{j}italic_T start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT and y𝑦yitalic_y is also in Tjsubscript𝑇𝑗T_{j}italic_T start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT.But then either i1=3subscript𝑖13\ell_{i-1}=3roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT = 3 and j=2𝑗2j=2italic_j = 2, in which case x𝑥xitalic_x can be chosen in T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, or i1=2subscript𝑖12\ell_{i-1}=2roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT = 2 and i=3subscript𝑖3\ell_{i}=3roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 3 in which case x𝑥xitalic_x can be chosen in T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and y𝑦yitalic_y in T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT.)On the other hand, if 2i=i+12subscript𝑖subscript𝑖12\ell_{i}=\ell_{i+1}2 roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT then (recall that 2i1>i2subscript𝑖1subscript𝑖2\ell_{i-1}>\ell_{i}2 roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT > roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT) 1==i1=i=2subscript1subscript𝑖1subscript𝑖2\ell_{1}=\dots=\ell_{i-1}=\ell_{i}=2roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = ⋯ = roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT = roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 2 and i+1=4subscript𝑖14\ell_{i+1}=4roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT = 4, so j=0ijsuperscriptsubscript𝑗0𝑖subscript𝑗\sum_{j=0}^{i}\ell_{j}∑ start_POSTSUBSCRIPT italic_j = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT is even, and no red edge is added between levels i1𝑖1i-1italic_i - 1 and i𝑖iitalic_i.

Case 2: There is a red edge between levels i2𝑖2i-2italic_i - 2 and i1𝑖1i-1italic_i - 1.Then j=0i1jsuperscriptsubscript𝑗0𝑖1subscript𝑗\sum_{j=0}^{i-1}\ell_{j}∑ start_POSTSUBSCRIPT italic_j = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i - 1 end_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT is odd.Assume that we also have to add a red edge between levels i1𝑖1i-1italic_i - 1 and i𝑖iitalic_i.Then j=0ijsuperscriptsubscript𝑗0𝑖subscript𝑗\sum_{j=0}^{i}\ell_{j}∑ start_POSTSUBSCRIPT italic_j = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT is also odd which means that isubscript𝑖\ell_{i}roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is even and that 2i1>i2subscript𝑖1subscript𝑖2\ell_{i-1}>\ell_{i}2 roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT > roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, as shown in Case1.Hence, 2i1>i+12subscript𝑖1subscript𝑖12\ell_{i-1}>\ell_{i}+12 roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT > roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + 1, so there is a vertex at (i1)𝑖1(i-1)( italic_i - 1 )-st level, say x𝑥xitalic_x, whose degree is less than 3333.As 2i>i+12subscript𝑖subscript𝑖12\ell_{i}>\ell_{i+1}2 roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT > roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT, there is a vertex at i𝑖iitalic_i-th level, say y𝑦yitalic_y, whose degree is also less than 3333, and we can add the edge xy𝑥𝑦xyitalic_x italic_y.(Multiple edges can be avoided analogously as in Case1.)∎

We remark that we did not precisely specify how to choose the vertices x𝑥xitalic_x and y𝑦yitalic_y, when a red edge is add between levels i1𝑖1i-1italic_i - 1 and i𝑖iitalic_i in casethere are several possibilities. Here are a few simple rules to follow when choosing x𝑥xitalic_x or y𝑦yitalic_y at level i𝑖iitalic_i:

  1. (i)

    if there are at least three leaves (in T1T2subscript𝑇1subscript𝑇2T_{1}\cup T_{2}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∪ italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT) at level i𝑖iitalic_i, then do not choose these leaves;

  2. (ii)

    if there is eactly one leaf w𝑤witalic_w at level i𝑖iitalic_i, wV(Tj)𝑤𝑉subscript𝑇𝑗w\in V(T_{j})italic_w ∈ italic_V ( italic_T start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ), then there must be a protected degree-2 vertex at level i𝑖iitalic_i in T3jsubscript𝑇3𝑗T_{3-j}italic_T start_POSTSUBSCRIPT 3 - italic_j end_POSTSUBSCRIPT (i.e.the protected vertex shall not be chosen);

  3. (iii)

    if there are two leaves w𝑤witalic_w and wsuperscript𝑤w^{\prime}italic_w start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT at level i𝑖iitalic_i (one of them is in T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and the other in T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, as we will prove later),then one degree-2222 vertex from T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and one degree-2222 vertex from T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT has to be protected;

  4. (iv)

    if there are no leaves at level i𝑖iitalic_i, we have no constraints.

The above rules will be fully justified later, when we will consider 2222-connectivity of the resulting graph H𝐻Hitalic_H.Denote by R𝑅Ritalic_R the graph obtained after adding red edges, as described above.We have the following statement.

Lemma 12.

In each level of R𝑅Ritalic_R, the sum of free valencies is even.

Proof.

Let 1id1𝑖𝑑1\leq i\leq d1 ≤ italic_i ≤ italic_d.We prove the statement for level i𝑖iitalic_i.So denote by a1,a2,,aisubscript𝑎1subscript𝑎2subscript𝑎subscript𝑖a_{1},a_{2},\dots,a_{\ell_{i}}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT the vertices at i𝑖iitalic_i-th level.Our task is to show that j=1i(3degR(aj))superscriptsubscript𝑗1subscript𝑖3subscriptdegree𝑅subscript𝑎𝑗\sum_{j=1}^{\ell_{i}}(3-\deg_{R}(a_{j}))∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( 3 - roman_deg start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ) is even.We distinguish two cases, with two subcases each.

Case 1: j=0ijsuperscriptsubscript𝑗0𝑖subscript𝑗\sum_{j=0}^{i}\ell_{j}∑ start_POSTSUBSCRIPT italic_j = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT is odd.Then there are i+1subscript𝑖1\ell_{i}+1roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + 1 edges between levels i1subscript𝑖1\ell_{i-1}roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT and isubscript𝑖\ell_{i}roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT in R𝑅Ritalic_R.If i+1subscript𝑖1\ell_{i+1}roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT is odd, then j=0i+1jsuperscriptsubscript𝑗0𝑖1subscript𝑗\sum_{j=0}^{i+1}\ell_{j}∑ start_POSTSUBSCRIPT italic_j = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i + 1 end_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT is even, so there are i+1subscript𝑖1\ell_{i+1}roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT edges between levels i𝑖iitalic_i and i+1𝑖1i+1italic_i + 1.Hence, j=1i(3degR(aj))=3ii1i+1superscriptsubscript𝑗1subscript𝑖3subscriptdegree𝑅subscript𝑎𝑗3subscript𝑖subscript𝑖1subscript𝑖1\sum_{j=1}^{\ell_{i}}(3-\deg_{R}(a_{j}))=3\ell_{i}-\ell_{i}-1-\ell_{i+1}∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( 3 - roman_deg start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ) = 3 roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - 1 - roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT is even.On the other hand, if i+1subscript𝑖1\ell_{i+1}roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT is even, then j=0i+1jsuperscriptsubscript𝑗0𝑖1subscript𝑗\sum_{j=0}^{i+1}\ell_{j}∑ start_POSTSUBSCRIPT italic_j = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i + 1 end_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT is odd, so there are i+1+1subscript𝑖11\ell_{i+1}+1roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT + 1 edges between levels i𝑖iitalic_i and i+1𝑖1i+1italic_i + 1.Hence, j=1i(3degR(aj))=3ii1i+11superscriptsubscript𝑗1subscript𝑖3subscriptdegree𝑅subscript𝑎𝑗3subscript𝑖subscript𝑖1subscript𝑖11\sum_{j=1}^{\ell_{i}}(3-\deg_{R}(a_{j}))=3\ell_{i}-\ell_{i}-1-\ell_{i+1}-1∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( 3 - roman_deg start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ) = 3 roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - 1 - roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT - 1 is even.

Case 2: j=0ijsuperscriptsubscript𝑗0𝑖subscript𝑗\sum_{j=0}^{i}\ell_{j}∑ start_POSTSUBSCRIPT italic_j = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT is even.Then there are isubscript𝑖\ell_{i}roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT edges between levels i1subscript𝑖1\ell_{i-1}roman_ℓ start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT and isubscript𝑖\ell_{i}roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT in R𝑅Ritalic_R.If i+1subscript𝑖1\ell_{i+1}roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT is odd, then j=0i+1jsuperscriptsubscript𝑗0𝑖1subscript𝑗\sum_{j=0}^{i+1}\ell_{j}∑ start_POSTSUBSCRIPT italic_j = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i + 1 end_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT is odd, so there are i+1+1subscript𝑖11\ell_{i+1}+1roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT + 1 edges between levels i𝑖iitalic_i and i+1𝑖1i+1italic_i + 1.Hence, j=1i(3degR(aj))=3iii+11superscriptsubscript𝑗1subscript𝑖3subscriptdegree𝑅subscript𝑎𝑗3subscript𝑖subscript𝑖subscript𝑖11\sum_{j=1}^{\ell_{i}}(3-\deg_{R}(a_{j}))=3\ell_{i}-\ell_{i}-\ell_{i+1}-1∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( 3 - roman_deg start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ) = 3 roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT - 1 is even.On the other hand, if i+1subscript𝑖1\ell_{i+1}roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT is even, then j=0i+1jsuperscriptsubscript𝑗0𝑖1subscript𝑗\sum_{j=0}^{i+1}\ell_{j}∑ start_POSTSUBSCRIPT italic_j = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i + 1 end_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT is also even, so there are i+1subscript𝑖1\ell_{i+1}roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT edges between levels i𝑖iitalic_i and i+1𝑖1i+1italic_i + 1.Hence, j=1i(3degR(aj))=3iii+1superscriptsubscript𝑗1subscript𝑖3subscriptdegree𝑅subscript𝑎𝑗3subscript𝑖subscript𝑖subscript𝑖1\sum_{j=1}^{\ell_{i}}(3-\deg_{R}(a_{j}))=3\ell_{i}-\ell_{i}-\ell_{i+1}∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( 3 - roman_deg start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ) = 3 roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT is even.∎

By Lemma12, the sum of free valencies is even at each level of R𝑅Ritalic_R.This means that, in general, after we add some edges connecting vertices within leveli𝑖iitalic_i, and when we do that for all i𝑖iitalic_i, 1id1𝑖𝑑1\leq i\leq d1 ≤ italic_i ≤ italic_d, the resulting graph H𝐻Hitalic_Hwill be cubic.We now describe how to add these ‘blue’ edges, so that H𝐻Hitalic_H will be 2222-connected,and how to resolve the cases when a level has small number of remaining degree-2222 vertices.

Observation.

H𝐻Hitalic_H will be 2222-connected iffor every leaf x𝑥xitalic_x of T𝑇Titalic_T, say xV(Tk)𝑥𝑉subscript𝑇𝑘x\in V(T_{k})italic_x ∈ italic_V ( italic_T start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ), where 1k21𝑘21\leq k\leq 21 ≤ italic_k ≤ 2 and x𝑥xitalic_x is a vertex at level i𝑖iitalic_i, there is apath, say P𝑃Pitalic_P, containing only the vertices of level i𝑖iitalic_i and connecting x𝑥xitalic_xwith a vertex, say y𝑦yitalic_y, of T3ksubscript𝑇3𝑘T_{3-k}italic_T start_POSTSUBSCRIPT 3 - italic_k end_POSTSUBSCRIPT.

We refer to the above as the 2222-connectivity condition.The reason is that P𝑃Pitalic_P can be completed to a cycle using a (vk,x)subscript𝑣𝑘𝑥(v_{k},x)( italic_v start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x )-path inTksubscript𝑇𝑘T_{k}italic_T start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT and a (v3k,y)subscript𝑣3𝑘𝑦(v_{3-k},y)( italic_v start_POSTSUBSCRIPT 3 - italic_k end_POSTSUBSCRIPT , italic_y )-path in T3ksubscript𝑇3𝑘T_{3-k}italic_T start_POSTSUBSCRIPT 3 - italic_k end_POSTSUBSCRIPT.Since all cycles constructed in this way contain three vertices of Gtsubscript𝐺𝑡G_{t}italic_G start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT,the resulting graph H𝐻Hitalic_H will be 2222-connected.We remark that in one special case the path P𝑃Pitalic_P will contain vertices of levels i𝑖iitalic_iand i+1𝑖1i+1italic_i + 1, but it will still be possible to complete P𝑃Pitalic_P to a cyclecontaining three vertices of Gtsubscript𝐺𝑡G_{t}italic_G start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT.Thus, our attention will be focused on the leaves of T𝑇Titalic_T.

Lemma 13.

It is possible to add edges to R𝑅Ritalic_R so that the resulting graph H𝐻Hitalic_H will be cubic and 2222-connected.

Proof.

First, we consider the d𝑑ditalic_d-th (i.e., the last) level.Note that all the vertices at level d𝑑ditalic_d are leaves of T𝑇Titalic_T.Since j=1dj=2qsuperscriptsubscript𝑗1𝑑subscript𝑗2𝑞\sum_{j=1}^{d}\ell_{j}=2q∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = 2 italic_q is even, each vertex at level d𝑑ditalic_d hasdegree 1111 in R𝑅Ritalic_R.We distinguish three cases.

Case 1: d3subscript𝑑3\ell_{d}\geq 3roman_ℓ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ≥ 3.In this case, we add to graph R𝑅Ritalic_R a cycle passing through all the vertices of leveld𝑑ditalic_d.Then the vertices of level d𝑑ditalic_d will have degree 3333 and they will satisfythe 2222-connectivity condition, since d/2subscript𝑑2\lceil\ell_{d}/2\rceil⌈ roman_ℓ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT / 2 ⌉ vertices oflevel d𝑑ditalic_d are in T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and d/dsubscript𝑑𝑑\lfloor\ell_{d}/d\rfloor⌊ roman_ℓ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT / italic_d ⌋ of them are inT2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

Case 2: d=1subscript𝑑1\ell_{d}=1roman_ℓ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT = 1.Then d13subscript𝑑13\ell_{d-1}\geq 3roman_ℓ start_POSTSUBSCRIPT italic_d - 1 end_POSTSUBSCRIPT ≥ 3, as already shown.In this case, we replace the sequence L=(1,2,,d1,1)𝐿subscript1subscript2subscript𝑑11L=(\ell_{1},\ell_{2},\dots,\ell_{d-1},1)italic_L = ( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , roman_ℓ start_POSTSUBSCRIPT italic_d - 1 end_POSTSUBSCRIPT , 1 )by L=(1,2,,d1,3)superscript𝐿subscript1subscript2subscript𝑑13L^{*}=(\ell_{1},\ell_{2},\dots,\ell_{d-1},3)italic_L start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = ( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , roman_ℓ start_POSTSUBSCRIPT italic_d - 1 end_POSTSUBSCRIPT , 3 ) and we find a 2-connected cubicgraph Hsuperscript𝐻H^{*}italic_H start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT realizing Lsuperscript𝐿L^{*}italic_L start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT.In this graph, the pendant vertices of level d𝑑ditalic_d are connected to threedifferent vertices of level d1𝑑1d-1italic_d - 1 in T𝑇Titalic_T, since at each level we minimised the number of degree-3333 vertices.Since j=1djsuperscriptsubscript𝑗1𝑑subscript𝑗\sum_{j=1}^{d}\ell_{j}∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT is even, there are no other edges connectingvertices of level d1𝑑1d-1italic_d - 1 with those of level d𝑑ditalic_d in R𝑅Ritalic_R.Hence, we add a 3333-cycle as described in Case1, and then contract thethree vertices at level d𝑑ditalic_d to a single vertex.If Hsuperscript𝐻H^{*}italic_H start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT is cubic and 2222-connected, then so is the resulting graph H𝐻Hitalic_H.

Case 3: d=2subscript𝑑2\ell_{d}=2roman_ℓ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT = 2.In this case, we simultaneously resolve the problem for levels d𝑑ditalic_d and d1𝑑1d-1italic_d - 1.Since j=1d1jsuperscriptsubscript𝑗1𝑑1subscript𝑗\sum_{j=1}^{d-1}\ell_{j}∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d - 1 end_POSTSUPERSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT is even, all vertices of level d1𝑑1d-1italic_d - 1have degree 1111 except for two, which have degree 2222.(Recall that T𝑇Titalic_T was constructed so that at each level the number ofvertices of degree 3333 was minimised.)

If d1=2subscript𝑑12\ell_{d-1}=2roman_ℓ start_POSTSUBSCRIPT italic_d - 1 end_POSTSUBSCRIPT = 2, then connect both vertices of level d1𝑑1d-1italic_d - 1 with bothvertices of level d𝑑ditalic_d and add an edge connecting the vertices of level d𝑑ditalic_d.Then the vertices of levels d1𝑑1d-1italic_d - 1 and d𝑑ditalic_d have degree 3333 and they satisfythe 2-connectivity condition.

If d13subscript𝑑13\ell_{d-1}\geq 3roman_ℓ start_POSTSUBSCRIPT italic_d - 1 end_POSTSUBSCRIPT ≥ 3, then pick a vertex of degree 1111 at level d1𝑑1d-1italic_d - 1, sayx𝑥xitalic_x, and join it to both vertices of level d𝑑ditalic_d.Then x𝑥xitalic_x has degree 3333, but since it is a leaf of T𝑇Titalic_T, it does not satisfythe 2222-connectivity condition in the strict sense.Nevertheless, there is a cycle in H𝐻Hitalic_H which contains edges of Gtsubscript𝐺𝑡G_{t}italic_G start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT, a pathconnecting v1subscript𝑣1v_{1}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT with a vertex of level d𝑑ditalic_d in T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, a path connectingv2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT with a vertex of level d𝑑ditalic_d in T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, and the two edges connecting x𝑥xitalic_xwith the vertices of level d𝑑ditalic_d, which is sufficient.Then add to H𝐻Hitalic_H the edge connecting vertices of level d𝑑ditalic_d and add a pathpassing through all vertices of level d1𝑑1d-1italic_d - 1 except x𝑥xitalic_x, and starting/endingin the two degree-2222 vertices.This resolves the problem for levels d𝑑ditalic_d and d1𝑑1d-1italic_d - 1. This concludes Case3.

We now turn to level i𝑖iitalic_i, 1i<d1𝑖𝑑1\leq i<d1 ≤ italic_i < italic_d. In case d=2subscript𝑑2\ell_{d}=2roman_ℓ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT = 2, we assumei<d1𝑖𝑑1i<d-1italic_i < italic_d - 1.Then vertices of level i𝑖iitalic_i are connected to vertices of levels i1𝑖1i-1italic_i - 1 andi+1𝑖1i+1italic_i + 1 using only the edges of R𝑅Ritalic_R, and we now add only edges connectingvertices within level i𝑖iitalic_i, i.e.the blue edges.

In some cases, we specify positions of red edges that were added to T𝑇Titalic_T to formR𝑅Ritalic_R, to justify the four rules for choosing vertices x𝑥xitalic_x and y𝑦yitalic_y in the process ofcreating R𝑅Ritalic_R.

If there is no leaf at level i𝑖iitalic_i, then all vertices of this levelhave degrees 2222 and 3333 in R𝑅Ritalic_R.By Lemma12, there is an even number of degree-2222 vertices.Thus, we can add a collection of independent edges so that all vertices oflevel i𝑖iitalic_i will have degree 3333.Since there were no leaves, the vertices of level i𝑖iitalic_i satisfy the2222-connectivity condition.

Now suppose that there are leaves at level i𝑖iitalic_i.Since we minimised the number of vertices of degree 3333 when constructing T𝑇Titalic_T, there are novertices of degree 3333 in level i𝑖iitalic_i.Consequently, each vertex of level i𝑖iitalic_i is connected to at most one vertex in level i+1𝑖1i+1italic_i + 1 in T𝑇Titalic_T.Hence, T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT have, respectively, i/2i+1/2subscript𝑖2subscript𝑖12\lceil\ell_{i}/2\rceil-\lceil\ell_{i+1}/2\rceil⌈ roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / 2 ⌉ - ⌈ roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT / 2 ⌉ and i/2i+1/2subscript𝑖2subscript𝑖12\lfloor\ell_{i}/2\rfloor-\lfloor\ell_{i+1}/2\rfloor⌊ roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / 2 ⌋ - ⌊ roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT / 2 ⌋ leaves at level i𝑖iitalic_i.Denotek=(i/2i+1/2)(i/2i+1/2)𝑘subscript𝑖2subscript𝑖12subscript𝑖2subscript𝑖12k=(\lceil\ell_{i}/2\rceil-\lceil\ell_{i+1}/2\rceil)-(\lfloor\ell_{i}/2\rfloor-%\lfloor\ell_{i+1}/2\rfloor)italic_k = ( ⌈ roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / 2 ⌉ - ⌈ roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT / 2 ⌉ ) - ( ⌊ roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / 2 ⌋ - ⌊ roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT / 2 ⌋ ).Sincek=(i/2i/2)(i+1/2i+1/2)𝑘subscript𝑖2subscript𝑖2subscript𝑖12subscript𝑖12k=(\lceil\ell_{i}/2\rceil-\lfloor\ell_{i}/2\rfloor)-(\lceil\ell_{i+1}/2\rceil-%\lfloor\ell_{i+1}/2\rfloor)italic_k = ( ⌈ roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / 2 ⌉ - ⌊ roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / 2 ⌋ ) - ( ⌈ roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT / 2 ⌉ - ⌊ roman_ℓ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT / 2 ⌋ ),we have

1k1.1𝑘1-1\leq k\leq 1.- 1 ≤ italic_k ≤ 1 .(6)

This means that the numbers of leaves at level i𝑖iitalic_i in T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT andT2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT differ by at most one, and also that there are no degree-3333 vertices at level i𝑖iitalic_i in T𝑇Titalic_T.Moreover, since i<d𝑖𝑑i<ditalic_i < italic_d, level i𝑖iitalic_i contains two vertices, say b1subscript𝑏1b_{1}italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and b2subscript𝑏2b_{2}italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,such that b1V(T1)subscript𝑏1𝑉subscript𝑇1b_{1}\in V(T_{1})italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ italic_V ( italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ), b2V(T2)subscript𝑏2𝑉subscript𝑇2b_{2}\in V(T_{2})italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ italic_V ( italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) and b1,b2subscript𝑏1subscript𝑏2b_{1},b_{2}italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are not leaves in T𝑇Titalic_T.(Recall that if i=d1𝑖𝑑1i=d-1italic_i = italic_d - 1 and d=1subscript𝑑1\ell_{d}=1roman_ℓ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT = 1, then then we solve this case for Lsuperscript𝐿L^{*}italic_L start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT where d=3subscript𝑑3\ell_{d}=3roman_ℓ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT = 3, and afterwards we provide the contraction of vertices at level d𝑑ditalic_d, see Case2 above.)Then degT(b1)=degT(b2)=2subscriptdegree𝑇subscript𝑏1subscriptdegree𝑇subscript𝑏22\deg_{T}(b_{1})=\deg_{T}(b_{2})=2roman_deg start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) = roman_deg start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = 2.We distinguish three cases.

Case1:T𝑇Titalic_T has at least 3333 leaves at level i𝑖iitalic_i.If E(R)E(T)𝐸𝑅𝐸𝑇E(R)\setminus E(T)italic_E ( italic_R ) ∖ italic_E ( italic_T ) contains an edge connecting levels i1𝑖1i-1italic_i - 1 and i𝑖iitalic_i, then thisedge will terminate at b1subscript𝑏1b_{1}italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, and if E(R)E(T)𝐸𝑅𝐸𝑇E(R)\setminus E(T)italic_E ( italic_R ) ∖ italic_E ( italic_T ) contains an edge connectinglevels i𝑖iitalic_i and i+1𝑖1i+1italic_i + 1, then this edge will start at b2subscript𝑏2b_{2}italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.(Note that if we create T𝑇Titalic_T and R𝑅Ritalic_R simultaneously, level by level, then we can form b1subscript𝑏1b_{1}italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and b2subscript𝑏2b_{2}italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, so that we do not get parallel edges.In the worst case we relabel b1subscript𝑏1b_{1}italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and b2subscript𝑏2b_{2}italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, so that b1V(T2)subscript𝑏1𝑉subscript𝑇2b_{1}\in V(T_{2})italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ italic_V ( italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) and b2V(T1)subscript𝑏2𝑉subscript𝑇1b_{2}\in V(T_{1})italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ italic_V ( italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ).)This leaves the leaves untouched.Then we add a cycle passing through all leaves of level i𝑖iitalic_i and adda collection of independent edges so that all vertices of level i𝑖iitalic_i become degree-3333 vertices.Since, at level i𝑖iitalic_i, at least one leaf is in T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and at least one is in T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, the vertices at level i𝑖iitalic_i satisfy the 2222-connectivitycondition.

Case2:T𝑇Titalic_T has exactly two leaves at level i𝑖iitalic_i.Denote these vertices by a1subscript𝑎1a_{1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and a2subscript𝑎2a_{2}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.As mentioned above, we may assume that a1V(T1)subscript𝑎1𝑉subscript𝑇1a_{1}\in V(T_{1})italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ italic_V ( italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and a2V(T2)subscript𝑎2𝑉subscript𝑇2a_{2}\in V(T_{2})italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ italic_V ( italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ).If E(R)E(T)𝐸𝑅𝐸𝑇E(R)\setminus E(T)italic_E ( italic_R ) ∖ italic_E ( italic_T ) contains an edge connecting levels i1𝑖1i-1italic_i - 1 and i𝑖iitalic_i, then thisedge will terminate at a1subscript𝑎1a_{1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, and if E(R)E(T)𝐸𝑅𝐸𝑇E(R)\setminus E(T)italic_E ( italic_R ) ∖ italic_E ( italic_T ) contains an edge connectinglevels i𝑖iitalic_i and i+1𝑖1i+1italic_i + 1, then this edge will start at a2subscript𝑎2a_{2}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.(Again, not to create parallel edges, the red edge between levels i1𝑖1i-1italic_i - 1 and i𝑖iitalic_i may be connected to a2subscript𝑎2a_{2}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT instead of a1subscript𝑎1a_{1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, and then possible red edge between levels i𝑖iitalic_i and i+1𝑖1i+1italic_i + 1 will start at a1subscript𝑎1a_{1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT.)Then add edges a1b2subscript𝑎1subscript𝑏2a_{1}b_{2}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, a2b1subscript𝑎2subscript𝑏1a_{2}b_{1}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, and a collection of independent edges sothat all vertices of level i𝑖iitalic_i become degree-3333 vertices.Due to the presence of edges a1b2subscript𝑎1subscript𝑏2a_{1}b_{2}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and a2b1subscript𝑎2subscript𝑏1a_{2}b_{1}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, the vertices at level i𝑖iitalic_i satisfy the2222-connectivity condition.

Case3:T𝑇Titalic_T has exactly one leaf at level i𝑖iitalic_i.Denote this vertex by a𝑎aitalic_a.Without loss of generality, assume that aV(T1)𝑎𝑉subscript𝑇1a\in V(T_{1})italic_a ∈ italic_V ( italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ).If E(R)E(T)𝐸𝑅𝐸𝑇E(R)\setminus E(T)italic_E ( italic_R ) ∖ italic_E ( italic_T ) contains an edge connecting levels i1𝑖1i-1italic_i - 1 and i𝑖iitalic_i, then thisedge will terminate at b1subscript𝑏1b_{1}italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, and if E(R)E(T)𝐸𝑅𝐸𝑇E(R)\setminus E(T)italic_E ( italic_R ) ∖ italic_E ( italic_T ) contains an edge connectinglevels i𝑖iitalic_i and i+1𝑖1i+1italic_i + 1, then this edge will start at a𝑎aitalic_a.(Not to create parallel edges, the red edge between levels i1𝑖1i-1italic_i - 1 and i𝑖iitalic_i may be connected to a𝑎aitalic_a instead of b1subscript𝑏1b_{1}italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, and then possible red edge between levels i𝑖iitalic_i and i+1𝑖1i+1italic_i + 1 will start at b1subscript𝑏1b_{1}italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT.)Then add the edge ab2𝑎subscript𝑏2ab_{2}italic_a italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, and a collection of independent edges sothat all vertices of level i𝑖iitalic_i become degree-3333 vertices.Due to the presence of edge ab2𝑎subscript𝑏2ab_{2}italic_a italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, vertices at level i𝑖iitalic_i satisfy the 2222-connectivitycondition.∎

3 Cubic 𝟐2\boldsymbol{2}bold_2-connected graphs with 𝟐𝒓superscript2𝒓\boldsymbol{2^{r}}bold_2 start_POSTSUPERSCRIPT bold_italic_r end_POSTSUPERSCRIPT Šoltés vertices

Now we generalise Theorem4 to higher amount of Šoltés vertices.

Theorem 14.

Let r1𝑟1r\geq 1italic_r ≥ 1.There exist infinitely many cubic 2222-connected graphs G𝐺Gitalic_G which contain at least 2rsuperscript2𝑟2^{r}2 start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT Šoltés vertices.

Proof.

We reconsider the graph Gtsubscript𝐺𝑡G_{t}italic_G start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT from the proof of Theorem4.This graph consists of a chain of 2t2𝑡2t2 italic_t diamonds attached to vertices z1subscript𝑧1z_{1}italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and z2subscript𝑧2z_{2}italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT of a graph on 8888 vertices.Denote this graph on 8888 vertices by F𝐹Fitalic_F.

We construct Gt,rsubscript𝐺𝑡𝑟G_{t,r}italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT.Take a binary tree B𝐵Bitalic_B of depth r1𝑟1r-1italic_r - 1.This tree has 2r1superscript2𝑟12^{r}-12 start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT - 1 vertices, out of which 2r1superscript2𝑟12^{r-1}2 start_POSTSUPERSCRIPT italic_r - 1 end_POSTSUPERSCRIPT are leaves.Denote these leaves by a1,a2,,a2r1subscript𝑎1subscript𝑎2subscript𝑎superscript2𝑟1a_{1},a_{2},\dots,a_{2^{r-1}}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_r - 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT.Let Bsuperscript𝐵B^{\prime}italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT be a copy of B𝐵Bitalic_B.To distinguish endvertices of Bsuperscript𝐵B^{\prime}italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT from those of B𝐵Bitalic_B, put to the endvertices of Bsuperscript𝐵B^{\prime}italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT dashes.Now take 2r1superscript2𝑟12^{r-1}2 start_POSTSUPERSCRIPT italic_r - 1 end_POSTSUPERSCRIPT chains of 2t2𝑡2t2 italic_t diamonds and identify the ends (the vertices of degree 2222) of k𝑘kitalic_k-th chain with aksubscript𝑎𝑘a_{k}italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT and aksubscriptsuperscript𝑎𝑘a^{\prime}_{k}italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, respectively.Finally, join the roots of B𝐵Bitalic_B and Bsuperscript𝐵B^{\prime}italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT (i.e., the vertices of degree 2222) by edges to z1subscript𝑧1z_{1}italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and z2subscript𝑧2z_{2}italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

Denote by Gt,rsubscript𝐺𝑡𝑟G_{t,r}italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT the resulting graph, see Figure5 for G3,2subscript𝐺32G_{3,2}italic_G start_POSTSUBSCRIPT 3 , 2 end_POSTSUBSCRIPT.Then Gt,rsubscript𝐺𝑡𝑟G_{t,r}italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT has 8t2r1+2(2r11)+88𝑡superscript2𝑟12superscript2𝑟1188t2^{r-1}+2(2^{r-1}-1)+88 italic_t 2 start_POSTSUPERSCRIPT italic_r - 1 end_POSTSUPERSCRIPT + 2 ( 2 start_POSTSUPERSCRIPT italic_r - 1 end_POSTSUPERSCRIPT - 1 ) + 8 vertices.Moreover, all central vertices of 2r1superscript2𝑟12^{r-1}2 start_POSTSUPERSCRIPT italic_r - 1 end_POSTSUPERSCRIPT chains of diamonds belong to the same orbit of Gt,rsubscript𝐺𝑡𝑟G_{t,r}italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT.Observe that there are 2rsuperscript2𝑟2^{r}2 start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT such vertices.Let u1subscript𝑢1u_{1}italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and u2subscript𝑢2u_{2}italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be central vertices of one of the chains of diamonds.If we show that limt(W(Gt,ru1)W(Gt,r))=subscript𝑡𝑊subscript𝐺𝑡𝑟subscript𝑢1𝑊subscript𝐺𝑡𝑟\lim_{t\to\infty}(W(G_{t,r}-u_{1})-W(G_{t,r}))=\inftyroman_lim start_POSTSUBSCRIPT italic_t → ∞ end_POSTSUBSCRIPT ( italic_W ( italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) - italic_W ( italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT ) ) = ∞, we can complete Gt,rsubscript𝐺𝑡𝑟G_{t,r}italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT analogously as Gtsubscript𝐺𝑡G_{t}italic_G start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT was completed to H𝐻Hitalic_H in the proof of Theorem4, to obtain a cubic 2limit-from22-2 -connected graph with at least 2rsuperscript2𝑟2^{r}2 start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT Šoltés vertices.

Thus, it remains to show that W(Gt,ru1)W(Gt,r)𝑊subscript𝐺𝑡𝑟subscript𝑢1𝑊subscript𝐺𝑡𝑟W(G_{t,r}-u_{1})-W(G_{t,r})italic_W ( italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) - italic_W ( italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT ) tends to infinity as t𝑡t\to\inftyitalic_t → ∞.Observe that W(Gt,ru1)W(Gt,r)𝑊subscript𝐺𝑡𝑟subscript𝑢1𝑊subscript𝐺𝑡𝑟W(G_{t,r}-u_{1})-W(G_{t,r})italic_W ( italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) - italic_W ( italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT ) equals

x,yV(Gt,r){u1}(dGt,ru1(x,y)dGt,r(x,y))wGt,r(u1).subscript𝑥𝑦𝑉subscript𝐺𝑡𝑟subscript𝑢1subscript𝑑subscript𝐺𝑡𝑟subscript𝑢1𝑥𝑦subscript𝑑subscript𝐺𝑡𝑟𝑥𝑦subscript𝑤subscript𝐺𝑡𝑟subscript𝑢1\sum_{x,y\in V(G_{t,r})\setminus\{u_{1}\}}\Big{(}d_{G_{t,r}-u_{1}}(x,y)-d_{G_{%t,r}}(x,y)\Big{)}-w_{G_{t,r}}(u_{1}).∑ start_POSTSUBSCRIPT italic_x , italic_y ∈ italic_V ( italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT ) ∖ { italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT } end_POSTSUBSCRIPT ( italic_d start_POSTSUBSCRIPT italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_x , italic_y ) - italic_d start_POSTSUBSCRIPT italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_x , italic_y ) ) - italic_w start_POSTSUBSCRIPT italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) .

We first estimate wGt,r(u1)subscript𝑤subscript𝐺𝑡𝑟subscript𝑢1w_{G_{t,r}}(u_{1})italic_w start_POSTSUBSCRIPT italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) from above.For small i𝑖iitalic_i, there are at most 4444 vertices at distance i𝑖iitalic_i from u1subscript𝑢1u_{1}italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT.For bigger i𝑖iitalic_i the amount of vertices at distance i𝑖iitalic_i grows, but it cannot exceed 42r+84superscript2𝑟84\cdot 2^{r}+84 ⋅ 2 start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT + 8 since there are 2r1superscript2𝑟12^{r-1}2 start_POSTSUPERSCRIPT italic_r - 1 end_POSTSUPERSCRIPT chains attached to F𝐹Fitalic_F and F𝐹Fitalic_F itself has 8888 vertices.Thus, wGt,r(u1)(2r+2+8)i=11+3t+2r+3t+3isubscript𝑤subscript𝐺𝑡𝑟subscript𝑢1superscript2𝑟28superscriptsubscript𝑖113𝑡2𝑟3𝑡3𝑖w_{G_{t,r}}(u_{1})\leq(2^{r+2}+8)\sum_{i=1}^{1+3t+2r+3t+3}iitalic_w start_POSTSUBSCRIPT italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ≤ ( 2 start_POSTSUPERSCRIPT italic_r + 2 end_POSTSUPERSCRIPT + 8 ) ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 + 3 italic_t + 2 italic_r + 3 italic_t + 3 end_POSTSUPERSCRIPT italic_i.And if we held r𝑟ritalic_r constant, wGt,r(u1)subscript𝑤subscript𝐺𝑡𝑟subscript𝑢1w_{G_{t,r}}(u_{1})italic_w start_POSTSUBSCRIPT italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) can be bounded from above by a quadratic polynomial in t𝑡titalic_t.

Now we estimate x,yV(Gt,r){u1}(dGt,ru1(x,y)dGt,r(x,y))subscript𝑥𝑦𝑉subscript𝐺𝑡𝑟subscript𝑢1subscript𝑑subscript𝐺𝑡𝑟subscript𝑢1𝑥𝑦subscript𝑑subscript𝐺𝑡𝑟𝑥𝑦\sum_{x,y\in V(G_{t,r})\setminus\{u_{1}\}}\big{(}d_{G_{t,r}-u_{1}}(x,y)-d_{G_{%t,r}}(x,y)\big{)}∑ start_POSTSUBSCRIPT italic_x , italic_y ∈ italic_V ( italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT ) ∖ { italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT } end_POSTSUBSCRIPT ( italic_d start_POSTSUBSCRIPT italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_x , italic_y ) - italic_d start_POSTSUBSCRIPT italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_x , italic_y ) ) from below.For every x,yV(Gt,r){u1}𝑥𝑦𝑉subscript𝐺𝑡𝑟subscript𝑢1x,y\in V(G_{t,r})\setminus\{u_{1}\}italic_x , italic_y ∈ italic_V ( italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT ) ∖ { italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT } we have dGt,ru1(x,y)dGt,r(x,y)subscript𝑑subscript𝐺𝑡𝑟subscript𝑢1𝑥𝑦subscript𝑑subscript𝐺𝑡𝑟𝑥𝑦d_{G_{t,r}-u_{1}}(x,y)\geq d_{G_{t,r}}(x,y)italic_d start_POSTSUBSCRIPT italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_x , italic_y ) ≥ italic_d start_POSTSUBSCRIPT italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_x , italic_y ), since Gt,rsubscript𝐺𝑡𝑟G_{t,r}italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT has all paths which exist in Gt,ru1subscript𝐺𝑡𝑟subscript𝑢1G_{t,r}-u_{1}italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT.However, it suffices to consider only x,y𝑥𝑦x,yitalic_x , italic_y being in the same chain of diamonds as u1subscript𝑢1u_{1}italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT.Observe that the distance from u2subscript𝑢2u_{2}italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT to a neighbour of u1subscript𝑢1u_{1}italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT (u2absentsubscript𝑢2\neq u_{2}≠ italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT) is 2222 in Gt,rsubscript𝐺𝑡𝑟G_{t,r}italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT, but it is at least 6t6𝑡6t6 italic_t in Gt,ru1subscript𝐺𝑡𝑟subscript𝑢1G_{t,r}-u_{1}italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT (with equality if r=1𝑟1r=1italic_r = 1, i.e. if Gt,r=Gtsubscript𝐺𝑡𝑟subscript𝐺𝑡G_{t,r}=G_{t}italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT = italic_G start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT).So this distance is increased at least by 6t26𝑡26t-26 italic_t - 2.The distance from u2subscript𝑢2u_{2}italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT to the second neighbour of u1subscript𝑢1u_{1}italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is increased at least by 6t46𝑡46t-46 italic_t - 4, etc.However, we should consider also a neighbour of u2subscript𝑢2u_{2}italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT (u1absentsubscript𝑢1\neq u_{1}≠ italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT).For this vertex the distances are increased at least by 6t46𝑡46t-46 italic_t - 4, 6t66𝑡66t-66 italic_t - 6, …Summing up,

Dj=13t1i=1j2i=2j=13t1(j+12)=2(3t+13).𝐷superscriptsubscript𝑗13𝑡1superscriptsubscript𝑖1𝑗2𝑖2superscriptsubscript𝑗13𝑡1binomial𝑗122binomial3𝑡13D\geq\sum_{j=1}^{3t-1}\sum_{i=1}^{j}2i=2\sum_{j=1}^{3t-1}\binom{j+1}{2}=2%\binom{3t+1}{3}.italic_D ≥ ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 italic_t - 1 end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT 2 italic_i = 2 ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 italic_t - 1 end_POSTSUPERSCRIPT ( FRACOP start_ARG italic_j + 1 end_ARG start_ARG 2 end_ARG ) = 2 ( FRACOP start_ARG 3 italic_t + 1 end_ARG start_ARG 3 end_ARG ) .

Consequently, W(Gt,ru1)W(Gt,r)𝑊subscript𝐺𝑡𝑟subscript𝑢1𝑊subscript𝐺𝑡𝑟W(G_{t,r}-u_{1})-W(G_{t,r})italic_W ( italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) - italic_W ( italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT ) is bounded from below by a cubic polynomial (in t𝑡titalic_t) with leading coefficient 9999.Thus, limt(W(Gt,ru1)W(Gt,r))=subscript𝑡𝑊subscript𝐺𝑡𝑟subscript𝑢1𝑊subscript𝐺𝑡𝑟\lim_{t\to\infty}(W(G_{t,r}-u_{1})-W(G_{t,r}))=\inftyroman_lim start_POSTSUBSCRIPT italic_t → ∞ end_POSTSUBSCRIPT ( italic_W ( italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) - italic_W ( italic_G start_POSTSUBSCRIPT italic_t , italic_r end_POSTSUBSCRIPT ) ) = ∞ as required.∎

4 Concluding remarks and further work

We believe that if there exists another Šoltés graph in addition to C11subscript𝐶11C_{11}italic_C start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT, it is likely to be vertex-transitive or has a low number of vertex orbits.Vertices of the same orbit are either all Šoltés vertices or none of them is.

Holt and Royle [5] have constructed a census of all vertex-transitive graphs with lessthan 48484848 vertices; these graphs can be obtained from their Zenodo repository [14] in the graph6 format [10].The repository contains 100 720 391100720391100\,720\,391100 720 391 graphs in total, 100 716 591100716591100\,716\,591100 716 591 of which are connected [12].The computer search revealed that the only Šoltés graph among them is the well-knownC11subscript𝐶11C_{11}italic_C start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT.

We also examined the census of cubic vertex-transitive graphs by Potočnik, Spiga and Verret[13]. Their census contains all (connected) cubic vertex-transitive graphs on up to1280128012801280 vertices; there are 111 360111360111\,360111 360 such graphs.CVT(n,i)CVT𝑛𝑖\operatorname{CVT}(n,i)roman_CVT ( italic_n , italic_i ) denotes the i𝑖iitalic_i-th graph of order n𝑛nitalic_n in the census.No Šoltés graph has been found, but the searchrevealed that there exist graphs that are 1313\frac{1}{3}divide start_ARG 1 end_ARG start_ARG 3 end_ARG-Šoltés, i.e.1313\frac{1}{3}divide start_ARG 1 end_ARG start_ARG 3 end_ARG of all verticesare Šoltés vertices. We found 7777 cubic 1313\frac{1}{3}divide start_ARG 1 end_ARG start_ARG 3 end_ARG-Šoltés graphs; all of them are trunctationsof certain cubic vertex-transitive graphs. In this paper, the truncation of a graph G𝐺Gitalic_G is denoted by Tr(G)Tr𝐺\operatorname{Tr}(G)roman_Tr ( italic_G ).Note that the truncation of a vertex-transitive graph is not necessarily a vertex-transitive graph;in the case of cubic graphs, there may be up to 3333 vertex orbits.When doing the computer search, we have to check the Šoltés property forone vertex from each orbit only. Here is the list of cubic vertex-transitive graphs G𝐺Gitalic_G,such that Tr(G)Tr𝐺\operatorname{Tr}(G)roman_Tr ( italic_G ) is a 1313\frac{1}{3}divide start_ARG 1 end_ARG start_ARG 3 end_ARG-Šoltés graph:

CVT(384,805),CVT384805\displaystyle\operatorname{CVT}(384,805),roman_CVT ( 384 , 805 ) ,CVT(600,259),CVT600259\displaystyle\operatorname{CVT}(600,259),roman_CVT ( 600 , 259 ) ,CVT(768,3650),CVT7683650\displaystyle\operatorname{CVT}(768,3650),roman_CVT ( 768 , 3650 ) ,CVT(1000,302),CVT1000302\displaystyle\operatorname{CVT}(1000,302),roman_CVT ( 1000 , 302 ) ,
CVT(1056,538),CVT1056538\displaystyle\operatorname{CVT}(1056,538),roman_CVT ( 1056 , 538 ) ,CVT(1056,511),CVT1056511\displaystyle\operatorname{CVT}(1056,511),roman_CVT ( 1056 , 511 ) ,CVT(1280,967).CVT1280967\displaystyle\operatorname{CVT}(1280,967).roman_CVT ( 1280 , 967 ) .

Interestingly, all these graphs are Cayley graphs. Several properties of these graphs are listedin the Appendix. The graph CVT(768,3650)CVT7683650\operatorname{CVT}(768,3650)roman_CVT ( 768 , 3650 ) is the only non-bipartite example, while the rest are bipartite.Girths of these graph are values from the set {4,6,8,10,12}4681012\{4,6,8,10,12\}{ 4 , 6 , 8 , 10 , 12 }. We were able to identify seven such graphs.However, we believe that there could exist many more.

Problem 15.

Find an infinite family of cubic vertex-trainsitive graphs {Gi}i=1superscriptsubscriptsubscript𝐺𝑖𝑖1\{G_{i}\}_{i=1}^{\infty}{ italic_G start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT, such that Tr(Gi)Trsubscript𝐺𝑖\operatorname{Tr}(G_{i})roman_Tr ( italic_G start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) isa 1313\frac{1}{3}divide start_ARG 1 end_ARG start_ARG 3 end_ARG-Šoltés graph for all i1𝑖1i\geq 1italic_i ≥ 1.

Moreover, we also found an example of a 4444-regular 1313\frac{1}{3}divide start_ARG 1 end_ARG start_ARG 3 end_ARG-Šoltés graph, namelythe graph L(CVT(324,104))𝐿CVT324104L(\operatorname{CVT}(324,104))italic_L ( roman_CVT ( 324 , 104 ) ). It has order 486486486486 and isthe line graph of CVT(324,104)CVT324104\operatorname{CVT}(324,104)roman_CVT ( 324 , 104 ), which is a Cayley graph.More data can be found in the Appendix.

Of course, 1313\frac{1}{3}divide start_ARG 1 end_ARG start_ARG 3 end_ARG-Šoltés is still a long way from being Šoltés.The next conjecture is additionally reinforced by the fact that there are no Šoltés graphs amongvertex-transitive graphs with less than 48484848 vertices.

Conjecture 16.

The cycle on eleven vertices, C11subscript𝐶11C_{11}italic_C start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT, is the only Šoltés graph.


Acknowledgments.The first author is supported in part by the Slovenian Research Agency(research program P1-0294 and research projects J1-1691, N1-0140, and J1-2481).The second author acknowledges partial support by Slovak research grants VEGA 1/0567/22, VEGA 1/0206/20,APVV–19–0308, and APVV–22–0005.The second and third authors acknowledge partial support of the Slovenian researchagency ARRS; program P1-0383 and ARRS project J1-3002.

References

  • [1]M.Akhmejanova, K.Olmezov, A.Volostnov, I.Vorobyev, K.Vorob’ev, Y.Yarovikov,Wiener index and graphs, almost half of whose vertices satisfy Šoltés property,Discrete Applied Mathematics,
  • [2]H.U.Besche, B.Eick, E.O’Brien,SmallGrp (The GAP Small Groups Library),https://docs.gap-system.org/pkg/smallgrp/doc/manual.pdf.
  • [3]J.Bok, N.Jedličková, J.Maxová,A relaxed version of Šoltés’s problem and cactus graphs,Bull.Malays.Math.Sci.Soc. 44 (2021) 3733–3745.
  • [4]A.A.Dobrynin,On the preservation of the Wiener index of cubic graphs upon vertex removal,Sib.Electron.Math.Rep. 20 (2023) 285–292.
  • [5]D.Holt, G.Royle,A census of small transitive groups and vertex-transitive graphs,J.Symb.Comput. 101 (2020) 51–60.
  • [6]Y.Hu, Z.Zhu, P.Wu, Z.Shao, A.Fahad,On investigations of graphs preserving the Wiener index upon vertex removal,AIMS Math. 6 (2021) 12976–12985.
  • [7]M.Knor, S.Majstorović, R.Škrekovski,Graphs whose Wiener index does not change when a specific vertex is removed,Discrete Appl.Math. 238 (2018) 126–132.
  • [8]M.Knor, S.Majstorović, R.Škrekovski,Graphs preserving Wiener index upon vertex removal,Appl.Math.Comput. 338 (2018) 25–32.
  • [9]M.Knor, R.Škrekovski, A.Tepeh,Mathematical aspects of Wiener index,Ars Math.Contemp. 11 (2016) 327–352.
  • [10]B.D.McKay,Description of graph6, sparse6 and digraph6 encodings,http://users.cecs.anu.edu.au/~bdm/data/formats.txt.
  • [11]B.D.McKay, A.Piperno,Practical graph isomorphism, II,J.Symb.Comput. 60 (2014) 94–112.
  • [12]OEIS Foundation Inc.(2022),Entry A006799 in The On-Line Encyclopedia of Integer Sequences,https://oeis.org/A006799.
  • [13]P.Potočnik, P.Spiga, G.Verret,Cubic vertex-transitive graphs on up to 1280128012801280 vertices,J.Symb.Comput. 50 (2013) 465–477.
  • [14]G.Royle, D.Holt, Vertex-transitive graphs on fewer than 48484848 vertices [Data set],Zenodo, https://doi.org/10.5281/zenodo.4010122.
  • [15]Ľ.Šoltés,Transmission in graphs: A bound and vertex removing,Math.Slovaca 41 (1991) 11–16.
  • [16]S.Spiro,The Wiener index of signed graphs,Appl.Math.Comput. 416 (2022) 126755.
  • [17]H.Wiener,Structural determination of paraffin boiling points,J.Am.Chem.Soc. 69 (1947) 17–20.

5 Appendix

There are 7777 cubic vertex-transitive graphs G𝐺Gitalic_G on up to 1280128012801280 vertices,such that Tr(G)Tr𝐺\operatorname{Tr}(G)roman_Tr ( italic_G ) is a 1313\frac{1}{3}divide start_ARG 1 end_ARG start_ARG 3 end_ARG-Šoltés graph. Since all these graphare Cayley graphs, we give the generating set for the Cayley graph.Note that the group itself (its permutation representation) is givenimplicitly by these generators;however, we also give the group’s ID from GAP’s library of small groups [2].SmallGroup(n,k)SmallGroup𝑛𝑘\operatorname{SmallGroup}(n,k)roman_SmallGroup ( italic_n , italic_k ) is the k𝑘kitalic_k-th group of order n𝑛nitalic_n from that library.We also calculated girth, diameter and tested all graphsfor bipartiteness.

  • CVT(384,805)CVT384805\operatorname{CVT}(384,805)roman_CVT ( 384 , 805 ):

    Group([\displaystyle\operatorname{Group}([roman_Group ( [(2,4)(6,12,17,19,18,14)(7,10,20)(8,15,16,9,11,13),2461217191814710208151691113\displaystyle(2,4)(6,12,17,19,18,14)(7,10,20)(8,15,16,9,11,13),( 2 , 4 ) ( 6 , 12 , 17 , 19 , 18 , 14 ) ( 7 , 10 , 20 ) ( 8 , 15 , 16 , 9 , 11 , 13 ) ,
    (1,4)(2,3)(5,13)(6,18)(7,17)(8,15)(9,12)(10,14)(11,19)(16,20)])\displaystyle(1,4)(2,3)(5,13)(6,18)(7,17)(8,15)(9,12)(10,14)(11,19)(16,20)])( 1 , 4 ) ( 2 , 3 ) ( 5 , 13 ) ( 6 , 18 ) ( 7 , 17 ) ( 8 , 15 ) ( 9 , 12 ) ( 10 , 14 ) ( 11 , 19 ) ( 16 , 20 ) ] )
    SmallGroup(384,5781)absentSmallGroup3845781\displaystyle\cong\operatorname{SmallGroup}(384,5781)≅ roman_SmallGroup ( 384 , 5781 )

    girth: 6;diameter: 10;bipartite? True

  • CVT(600,259)CVT600259\operatorname{CVT}(600,259)roman_CVT ( 600 , 259 ):

    Group([\displaystyle\operatorname{Group}([roman_Group ( [(1,2)(3,4)(5,6)(7,9)(8,10)(13,14)(16,17),1234567981013141617\displaystyle(1,2)(3,4)(5,6)(7,9)(8,10)(13,14)(16,17),( 1 , 2 ) ( 3 , 4 ) ( 5 , 6 ) ( 7 , 9 ) ( 8 , 10 ) ( 13 , 14 ) ( 16 , 17 ) ,
    (1,3)(5,7)(6,8)(9,12)(10,13)(11,14)(15,16),135768912101311141516\displaystyle(1,3)(5,7)(6,8)(9,12)(10,13)(11,14)(15,16),( 1 , 3 ) ( 5 , 7 ) ( 6 , 8 ) ( 9 , 12 ) ( 10 , 13 ) ( 11 , 14 ) ( 15 , 16 ) ,
    (1,4)(2,3)(5,6)(8,11)(9,10)(13,14)(15,17)])\displaystyle(1,4)(2,3)(5,6)(8,11)(9,10)(13,14)(15,17)])( 1 , 4 ) ( 2 , 3 ) ( 5 , 6 ) ( 8 , 11 ) ( 9 , 10 ) ( 13 , 14 ) ( 15 , 17 ) ] )
    SmallGroup(600,103)absentSmallGroup600103\displaystyle\cong\operatorname{SmallGroup}(600,103)≅ roman_SmallGroup ( 600 , 103 )

    girth: 10;diameter: 13;bipartite? True

  • CVT(768,3650)CVT7683650\operatorname{CVT}(768,3650)roman_CVT ( 768 , 3650 ):

    Group([\displaystyle\operatorname{Group}([roman_Group ( [(2,3)(4,7)(5,6)(10,12),2347561012\displaystyle(2,3)(4,7)(5,6)(10,12),( 2 , 3 ) ( 4 , 7 ) ( 5 , 6 ) ( 10 , 12 ) ,
    (2,4)(3,5)(6,7)(9,10)(11,12),2435679101112\displaystyle(2,4)(3,5)(6,7)(9,10)(11,12),( 2 , 4 ) ( 3 , 5 ) ( 6 , 7 ) ( 9 , 10 ) ( 11 , 12 ) ,
    (1,2)(3,6)(4,8)(5,7)])\displaystyle(1,2)(3,6)(4,8)(5,7)])( 1 , 2 ) ( 3 , 6 ) ( 4 , 8 ) ( 5 , 7 ) ] )
    SmallGroup(768,1090104)absentSmallGroup7681090104\displaystyle\cong\operatorname{SmallGroup}(768,1090104)≅ roman_SmallGroup ( 768 , 1090104 )

    girth: 8;diameter: 16;bipartite? False

  • CVT(1000,302)CVT1000302\operatorname{CVT}(1000,302)roman_CVT ( 1000 , 302 ):

    Group([\displaystyle\operatorname{Group}([roman_Group ( [(4,5)(6,7)(9,14)(10,18)(11,21)(12,23)(13,25)(15,24)(16,27)(17,29)45679141018112112231325152416271729\displaystyle(4,5)(6,7)(9,14)(10,18)(11,21)(12,23)(13,25)(15,24)(16,27)(17,29)( 4 , 5 ) ( 6 , 7 ) ( 9 , 14 ) ( 10 , 18 ) ( 11 , 21 ) ( 12 , 23 ) ( 13 , 25 ) ( 15 , 24 ) ( 16 , 27 ) ( 17 , 29 )
    (19,26)(20,31)(22,28)(30,32),1926203122283032\displaystyle\quad(19,26)(20,31)(22,28)(30,32),( 19 , 26 ) ( 20 , 31 ) ( 22 , 28 ) ( 30 , 32 ) ,
    (1,2)(3,4)(5,6)(8,9)(10,15)(11,19)(12,18)(13,21)(14,23)(16,17)(20,27)123456891015111912181321142316172027\displaystyle(1,2)(3,4)(5,6)(8,9)(10,15)(11,19)(12,18)(13,21)(14,23)(16,17)(20%,27)( 1 , 2 ) ( 3 , 4 ) ( 5 , 6 ) ( 8 , 9 ) ( 10 , 15 ) ( 11 , 19 ) ( 12 , 18 ) ( 13 , 21 ) ( 14 , 23 ) ( 16 , 17 ) ( 20 , 27 )
    (22,29)(24,31)(25,32)(26,28),2229243125322628\displaystyle\quad(22,29)(24,31)(25,32)(26,28),( 22 , 29 ) ( 24 , 31 ) ( 25 , 32 ) ( 26 , 28 ) ,
    (1,2)(8,17)(9,27)(10,11)(12,26)(13,24)(14,22)(15,18)(16,30)(20,32)128179271011122613241422151816302032\displaystyle(1,2)(8,17)(9,27)(10,11)(12,26)(13,24)(14,22)(15,18)(16,30)(20,32)( 1 , 2 ) ( 8 , 17 ) ( 9 , 27 ) ( 10 , 11 ) ( 12 , 26 ) ( 13 , 24 ) ( 14 , 22 ) ( 15 , 18 ) ( 16 , 30 ) ( 20 , 32 )
    (21,28)(23,31)(25,29)])\displaystyle\quad(21,28)(23,31)(25,29)])( 21 , 28 ) ( 23 , 31 ) ( 25 , 29 ) ] )
    SmallGroup(1000,105)absentSmallGroup1000105\displaystyle\cong\operatorname{SmallGroup}(1000,105)≅ roman_SmallGroup ( 1000 , 105 )

    girth: 10;diameter: 15;bipartite? True

  • CVT(1056,538)CVT1056538\operatorname{CVT}(1056,538)roman_CVT ( 1056 , 538 ):

    Group([\displaystyle\operatorname{Group}([roman_Group ( [(2,3)(4,5)(6,8)(7,10)(9,11)(13,14)(15,16)(17,18)(19,20)(21,22),23456871091113141516171819202122\displaystyle(2,3)(4,5)(6,8)(7,10)(9,11)(13,14)(15,16)(17,18)(19,20)(21,22),( 2 , 3 ) ( 4 , 5 ) ( 6 , 8 ) ( 7 , 10 ) ( 9 , 11 ) ( 13 , 14 ) ( 15 , 16 ) ( 17 , 18 ) ( 19 , 20 ) ( 21 , 22 ) ,
    (1,2)(4,6)(7,9)(12,13)(14,15)(16,17)(18,19)(20,21),12467912131415161718192021\displaystyle(1,2)(4,6)(7,9)(12,13)(14,15)(16,17)(18,19)(20,21),( 1 , 2 ) ( 4 , 6 ) ( 7 , 9 ) ( 12 , 13 ) ( 14 , 15 ) ( 16 , 17 ) ( 18 , 19 ) ( 20 , 21 ) ,
    (4,7)(6,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)])\displaystyle(4,7)(6,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)])( 4 , 7 ) ( 6 , 9 ) ( 10 , 11 ) ( 12 , 13 ) ( 14 , 15 ) ( 16 , 17 ) ( 18 , 19 ) ( 20 , 21 ) ] )
    SmallGroup(1056,493)absentSmallGroup1056493\displaystyle\cong\operatorname{SmallGroup}(1056,493)≅ roman_SmallGroup ( 1056 , 493 )

    girth: 4;diameter: 22;bipartite? True

  • CVT(1056,511)CVT1056511\operatorname{CVT}(1056,511)roman_CVT ( 1056 , 511 ):

    Group([\displaystyle\operatorname{Group}([roman_Group ( [(2,3)(12,13)(14,15)(16,17)(18,19)(20,21),2312131415161718192021\displaystyle(2,3)(12,13)(14,15)(16,17)(18,19)(20,21),( 2 , 3 ) ( 12 , 13 ) ( 14 , 15 ) ( 16 , 17 ) ( 18 , 19 ) ( 20 , 21 ) ,
    (1,2)(4,5)(6,7)(8,9)(10,11)(12,14)(15,16)(17,18)(19,20)(21,22),12456789101112141516171819202122\displaystyle(1,2)(4,5)(6,7)(8,9)(10,11)(12,14)(15,16)(17,18)(19,20)(21,22),( 1 , 2 ) ( 4 , 5 ) ( 6 , 7 ) ( 8 , 9 ) ( 10 , 11 ) ( 12 , 14 ) ( 15 , 16 ) ( 17 , 18 ) ( 19 , 20 ) ( 21 , 22 ) ,
    (5,6)(7,8)(9,10)(12,13)(14,15)(16,17)(18,19)(20,21)])\displaystyle(5,6)(7,8)(9,10)(12,13)(14,15)(16,17)(18,19)(20,21)])( 5 , 6 ) ( 7 , 8 ) ( 9 , 10 ) ( 12 , 13 ) ( 14 , 15 ) ( 16 , 17 ) ( 18 , 19 ) ( 20 , 21 ) ] )
    SmallGroup(1056,468)absentSmallGroup1056468\displaystyle\cong\operatorname{SmallGroup}(1056,468)≅ roman_SmallGroup ( 1056 , 468 )

    girth: 4;diameter: 22;bipartite? True

  • CVT(1280,967)CVT1280967\operatorname{CVT}(1280,967)roman_CVT ( 1280 , 967 ):

    Group([\displaystyle\operatorname{Group}([roman_Group ( [(1,2)(3,5)(7,9)(8,11)(10,15)(12,19)(13,20)(14,22)(16,25)(17,27)123579811101512191320142216251727\displaystyle(1,2)(3,5)(7,9)(8,11)(10,15)(12,19)(13,20)(14,22)(16,25)(17,27)( 1 , 2 ) ( 3 , 5 ) ( 7 , 9 ) ( 8 , 11 ) ( 10 , 15 ) ( 12 , 19 ) ( 13 , 20 ) ( 14 , 22 ) ( 16 , 25 ) ( 17 , 27 )
    (18,29)(21,32)(23,34)(24,30)(26,31)(28,37),182921322334243026312837\displaystyle\quad(18,29)(21,32)(23,34)(24,30)(26,31)(28,37),( 18 , 29 ) ( 21 , 32 ) ( 23 , 34 ) ( 24 , 30 ) ( 26 , 31 ) ( 28 , 37 ) ,
    (1,3)(4,5)(6,7)(8,12)(9,13)(10,16)(11,17)(15,23)(18,30)(20,31)13456781291310161117152318302031\displaystyle(1,3)(4,5)(6,7)(8,12)(9,13)(10,16)(11,17)(15,23)(18,30)(20,31)( 1 , 3 ) ( 4 , 5 ) ( 6 , 7 ) ( 8 , 12 ) ( 9 , 13 ) ( 10 , 16 ) ( 11 , 17 ) ( 15 , 23 ) ( 18 , 30 ) ( 20 , 31 )
    (21,27)(22,25)(24,28)(26,36)(29,33)(35,37),212722252428263629333537\displaystyle\quad(21,27)(22,25)(24,28)(26,36)(29,33)(35,37),( 21 , 27 ) ( 22 , 25 ) ( 24 , 28 ) ( 26 , 36 ) ( 29 , 33 ) ( 35 , 37 ) ,
    (1,4)(2,3)(6,8)(7,10)(9,14)(11,18)(12,20)(13,21)(15,24)(16,26)14236871091411181220132115241626\displaystyle(1,4)(2,3)(6,8)(7,10)(9,14)(11,18)(12,20)(13,21)(15,24)(16,26)( 1 , 4 ) ( 2 , 3 ) ( 6 , 8 ) ( 7 , 10 ) ( 9 , 14 ) ( 11 , 18 ) ( 12 , 20 ) ( 13 , 21 ) ( 15 , 24 ) ( 16 , 26 )
    (17,28)(19,29)(22,33)(23,35)(25,30)(27,36)(31,34)(32,37)])\displaystyle\quad(17,28)(19,29)(22,33)(23,35)(25,30)(27,36)(31,34)(32,37)])( 17 , 28 ) ( 19 , 29 ) ( 22 , 33 ) ( 23 , 35 ) ( 25 , 30 ) ( 27 , 36 ) ( 31 , 34 ) ( 32 , 37 ) ] )
    SmallGroup(1280,81752)absentSmallGroup128081752\displaystyle\cong\operatorname{SmallGroup}(1280,81752)≅ roman_SmallGroup ( 1280 , 81752 )

    girth: 12;diameter: 16;bipartite? True

There exists one cubic vertex-transitive graph G𝐺Gitalic_G on up to 1280128012801280 vertices,such that L(G)𝐿𝐺L(G)italic_L ( italic_G ) is a 1313\frac{1}{3}divide start_ARG 1 end_ARG start_ARG 3 end_ARG-Šoltés graph.

  • CVT(324,104)CVT324104\operatorname{CVT}(324,104)roman_CVT ( 324 , 104 ):

    Group([\displaystyle\operatorname{Group}([roman_Group ( [(2,9)(3,4)(5,7)(6,8),29345768\displaystyle(2,9)(3,4)(5,7)(6,8),( 2 , 9 ) ( 3 , 4 ) ( 5 , 7 ) ( 6 , 8 ) ,
    (1,5)(2,6)(3,9)(4,7),15263947\displaystyle(1,5)(2,6)(3,9)(4,7),( 1 , 5 ) ( 2 , 6 ) ( 3 , 9 ) ( 4 , 7 ) ,
    (2,9)(3,6)(4,8)])\displaystyle(2,9)(3,6)(4,8)])( 2 , 9 ) ( 3 , 6 ) ( 4 , 8 ) ] )
    SmallGroup(324,39)absentSmallGroup32439\displaystyle\cong\operatorname{SmallGroup}(324,39)≅ roman_SmallGroup ( 324 , 39 )

    girth: 4;diameter: 12;bipartite: True

On regular graphs with Šoltés vertices (2024)

References

Top Articles
Latest Posts
Article information

Author: Jonah Leffler

Last Updated:

Views: 6600

Rating: 4.4 / 5 (45 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Jonah Leffler

Birthday: 1997-10-27

Address: 8987 Kieth Ports, Luettgenland, CT 54657-9808

Phone: +2611128251586

Job: Mining Supervisor

Hobby: Worldbuilding, Electronics, Amateur radio, Skiing, Cycling, Jogging, Taxidermy

Introduction: My name is Jonah Leffler, I am a determined, faithful, outstanding, inexpensive, cheerful, determined, smiling person who loves writing and wants to share my knowledge and understanding with you.